2.直線3x+3y+1=0的傾斜角是 (  )
A.30°B.60°C.120°D.135°

分析 把直線的方程化為斜截式,求出斜率,根據(jù)斜率和傾斜角的關系,傾斜角的范圍,求出傾斜角的大小.

解答 解:直線3x+3y+1=0,即y=-x-$\frac{1}{3}$
故直線的斜率為:-1.
設直線的斜率為α,
則0°≤α<180°,且tanα=-1,故α=135°,
故選:D.

點評 本題考查直線的傾斜角和斜率的關系,以及傾斜角的取值范圍,已知三角函數(shù)值求角的大。蟪鲋本的斜率是解題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.已知A=$\{x|y=\sqrt{x}+1\}$,B=$\{y|y=\sqrt{x}-1\}$,則A∩B=(  )
A.(-∞,0)B.[0,+∞)C.[1,+∞)D.[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖所示的程序運行后輸出的第3個數(shù)是2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在等比數(shù)列{an}中,若a1=2,a3=4,則a7等于(  )
A.8B.16C.32D.64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.將(-1.8)${\;}^{\frac{2}{3}}}$,2${\;}^{\frac{2}{3}}}$,(-2)${\;}^{\frac{1}{3}}}$由大到小排列為${2^{\frac{2}{3}}}>{(-1.8)^{\frac{2}{3}}}>{(-2)^{\frac{1}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{2}$sin$\frac{x}{2}$cos$\frac{x}{2}$-$\sqrt{2}$sin2$\frac{x}{2}$.
(1)求f(x)的最小正周期;
(2)設△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且c=$\sqrt{3}$,f(C)=0,若向量$\overrightarrow{m}$=(1,sinA)與向量$\overrightarrow{n}$=($\sqrt{2}$,sinB)共線,求a,b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.若不等式ax2+bx+c>0的解集是(-1,2),則不等式bx2-ax-c>0的解集為(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.若函數(shù)f(x)=sinωx(ω>0)在區(qū)間[${\frac{π}{3}$,$\frac{π}{2}}$]上遞減,則ω=( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,∠ABC=60°,且AB=5,AC=7,則BC=8 .

查看答案和解析>>

同步練習冊答案