20.在平面直角坐標系中,點M在曲線C:y=x3-2x上,已知曲線C在點M處的切線的斜率為1,則點M的坐標為(1,-1)或(-1,1).

分析 設切點M(m,n),求出函數(shù)的導數(shù),可得切線的斜率,解m的方程可得m,代入曲線方程,可得n,進而得到M的坐標.

解答 解:設切點M(m,n),
y=x3-2x的導數(shù)為y′=3x2-2,
可得曲線C在點M處的切線的斜率為3m2-2=1,
解得m=±1,
可得n=m3-2m=1-2=-1或-1+2=1.
則M(1,-1)或(-1,1).
故答案為:(1,-1)或(-1,1).

點評 本題考查導數(shù)的運用:求切線的斜率,考查導數(shù)的幾何意義,正確求導是解題的關鍵,考查運算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.正四面體ABCD的體積為V,P是正四面體ABCD內(nèi)部的一個點.
(1)設“VP-ABC≥$\frac{1}{4}$V”為事件X,求概率P(X)
(2)設“VP-ABC≥$\frac{1}{4}$V且VP-BCD≥$\frac{1}{4}$V”為事件Y,求概率P(Y)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.設i為虛數(shù)單位,則復數(shù)$\frac{3-4i}{i}$的虛部為(  )
A.3iB.3C.-3iD.-3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知m,n∈R,則“m>n>0”是“$\frac{x^2}{m}+\frac{y^2}{n}$=1(m>0,n>0)為橢圓方程”的(  )
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在2016年3月15日,某市物價部門對本市的5家商場的某商品的一天銷售量及其價格進行調(diào)查,5家商場的售價x元和銷售量y件之間的一組數(shù)據(jù)如表所示:
價格x9.29.31010.511
銷售量y1110865
由散點圖可知,銷售量y與價格x之間有較好的線性相關關系,其線性回歸直線方程是:$\widehat{y}$=-2.2x+a,那么a的值為( 。
A.-24B.29.2C.30D.40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知向量$\vec a$=${\vec e_1}$-$2{\vec e_2}$,$\vec b$=$3{\vec e_1}$+${\vec e_2}$,其中${\vec e_1}$=(1,0),${\vec e_2}$=(0,1),求:
(1)$\vec a•\vec b$;
(2)$\vec a$與$\vec b$夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.等比數(shù)列{an}中,已知對任意正整數(shù)n,a1+a2+a3+…+an=2n+m,則a12+a22+a32+…+an2等于( 。
A.$\frac{1}{3}({4^n}+m)$B.$\frac{1}{3}({2^n}-1)$C.(4n-1)D.(2n+m)2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)=ln(4-x2)的定義域為(-2,2),f(x)的單調(diào)減區(qū)間為[0,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.如果f(x+y)=f(x)•f(y)且f(1)=1,則$\frac{f(2)}{f(1)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2010)}{f(2009)}$+$\frac{f(2012)}{f(2011)}$等于(  )
A.1005B.1006C.2008D.2010

查看答案和解析>>

同步練習冊答案