數(shù)列{an}為等差數(shù)列,a2與a6的等差中項為5,a3與a7的等差中項為7,則數(shù)列的通項an等于
2n-3
2n-3
分析:利用等差數(shù)列的通項公式用首項a1及公差d表示已知,解方程求出a1及公差d后再代入等差數(shù)列的通項可求
解答:解:由a2+a6=10,a3+a7=14
2a1+6d=10
2a1+8d=14
,解方程可得d=2,a1=-1
∴an=-1+2(n-1)=2n-3
故答案為:2n-3
點評:本題主要考查了等差數(shù)列的通項公式的簡單應用,屬于基礎試題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

7、已知數(shù)列{an}的前n項和為Sn,若S1=1.S2=2,且Sn+1-3Sn+2Sn-1=0,(n∈N*,n≥2,則此數(shù)列為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

把公差為2的等差數(shù){an}的各項依次插入等比數(shù){bn}中,{bn}按原順序分成1項,2項,4項,…2n-1項的各組,得到數(shù)列{cn}:b1,a1,b2,b3,a2,b4,b5,b6,b7,a3,…,數(shù)列{cn}的前n項的和sn.若c1=1,c2=2,S3=
13
4
.則數(shù){cn}的前100項之和S100=
1
3
[130-(
1
2
)
186
]
1
3
[130-(
1
2
)
186
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列{an}的前n項和為Sn,若S1=1.S2=2,且Sn+1-3Sn+2Sn-1=0,(n∈N*,n≥2,則此數(shù)列為( 。
A.等差數(shù)B.等比數(shù)列
C.從第二項起為等差數(shù)列D.從第二項起為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

把公差為2的等差數(shù){an}的各項依次插入等比數(shù){bn}中,{bn}按原順序分成1項,2項,4項,…2n-1項的各組,得到數(shù)列{cn}:b1,a1,b2,b3,a2,b4,b5,b6,b7,a3,…,數(shù)列{cn}的前n項的和sn.若c1=1,c2=2,S3=
13
4
.則數(shù){cn}的前100項之和S100=______.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年北京101中學高三(上)9月統(tǒng)考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知數(shù)列{an}的前n項和為Sn,若S1=1.S2=2,且Sn+1-3Sn+2Sn-1=0,(n∈N*,n≥2,則此數(shù)列為( )
A.等差數(shù)
B.等比數(shù)列
C.從第二項起為等差數(shù)列
D.從第二項起為等比數(shù)列

查看答案和解析>>

同步練習冊答案