分析 (1)根據(jù)動圓過定點以及直線和x軸相交的弦長理由參數(shù)消元法即可求動圓圓心的軌跡E的方程;
(2)設A(x1,y1),B(x2,y2),x1≠x2,P(x0,y0),利用設而不求的思想,結合曲線在A,B處的切線方程,求出交點坐標借助向量數(shù)量積的關系進行轉化求解即可.
解答 解:(1)設動圓圓心的坐標為(x,y),半徑r,(r>0),
∵動圓過定點R(0,2),且在x軸上截得線段MN的長為4,
∴$\left\{\begin{array}{l}{{x}^{2}+(y-2)^{2}={r}^{2}}\\{{y}^{2}+4={r}^{2}}\end{array}\right.$,消去r得x2=4y,
故所求軌跡E的方程為x2=4y;
(2)不妨設A(x1,y1),B(x2,y2),x1≠x2,
P(x0,y0),由題知Q(0,1),
由$\left\{\begin{array}{l}{y=kx+t}\\{{x}^{2}=4y}\end{array}\right.$,消去y得x2-4kx-4t=0,
∴x1+x2=4k,x1x2=-4t,軌跡E在A點處的切線方程為l1:y-y1=$\frac{{x}_{1}}{2}$(x-x1),即y=$\frac{{x}_{1}}{2}$x-$\frac{{{x}_{1}}^{2}}{4}$,
同理,軌跡E在B處的切線方程為l1:y=$\frac{{x}_{2}}{2}$x-$\frac{{{x}_{2}}^{2}}{4}$,
聯(lián)立l1,l2:的方程解得交點坐標P($\frac{{x}_{1}+{x}_{2}}{2}$,$\frac{{x}_{1}{x}_{2}}{4}$),即P(2k,-t),
由tan∠APB=$\frac{|\overrightarrow{PQ}|•|\overrightarrow{AB}|}{\overrightarrow{PA}•\overrightarrow{PB}}$得到|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|sin∠APB=|$\overrightarrow{PQ}$|•|$\overrightarrow{AB}$|=2S△APB,
得$\overrightarrow{PQ}$⊥$\overrightarrow{AB}$,即$\overrightarrow{PQ}$•$\overrightarrow{AB}$=0,
$\overrightarrow{PQ}$=(-2k,2t),$\overrightarrow{AB}$=(x2-x1,$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$),
∴-2k(x2-x1)+2t•$\frac{{{x}_{2}}^{2}-{{x}_{1}}^{2}}{4}$=0,
即2k(x2-x1)(t-1)=0,
則2k(t-1)=0,
則t=1,
故Q是定點,坐標為(0,1).
點評 本題主要考查與圓有關的軌跡問題,涉及直線和拋物線的相交的位置關系,利用設而不求的數(shù)學思想是解決本題的關鍵.綜合性較強,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -20 | B. | -15 | C. | 15 | D. | 20 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4 | B. | $6\sqrt{2}$ | C. | 12 | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com