從方程中消去t,此過程如下:
由x=2t得,將代入y=t-3中,得到
仿照上述方法,將方程中的α消去,并說明它表示什么圖形,求出其焦點.
【答案】分析:方程變形為,利用同角三角函數(shù)的基本關系平方相加可得橢圓方程,求出焦點坐標.
解答:解:方程變形為,平方得,
兩式相加得,它表示橢圓,焦點為
點評:本題考查把參數(shù)方程化為普通方程的方法,同角三角函數(shù)的基本關系,橢圓的標準方程與簡單性質(zhì)的應用,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從方程
x=2t
y=t-3
中消去t,此過程如下:
由x=2t得t=
x
2
,將t=
x
2
代入y=t-3中,得到y=
1
2
x-3

仿照上述方法,將方程
x=3cosα
y=2sinα
中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從方程數(shù)學公式中消去t,此過程如下:
由x=2t得數(shù)學公式,將數(shù)學公式代入y=t-3中,得到數(shù)學公式
仿照上述方法,將方程數(shù)學公式中的α消去,并說明它表示什么圖形,求出其焦點.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

同步練習冊答案