(本題滿分18分)本題共有3個(gè)小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.

已知函數(shù)定義在區(qū)間上,,對(duì)任意,

恒有成立,又?jǐn)?shù)列滿足

設(shè)

(1)在內(nèi)求一個(gè)實(shí)數(shù),使得;

(2)證明數(shù)列是等比數(shù)列,并求的表達(dá)式和的值;

(3)是否存在,使得對(duì)任意,都有成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

解:(1),∴(3分)

(2),且
,即

是以為首項(xiàng),為公比的等比數(shù)列,                    (2分)

.   (4分)       ∴.      (8分)

(3)(理)由(2)得,

,                              (1分)

是遞減數(shù)列,∴,    (3分)

要使對(duì)任意恒成立,

只須,即,    (5分)

故  ,∴,或,

∴當(dāng),且時(shí),對(duì)任意恒成立,

的最小正整數(shù)值為。                                   (7分)

(文)由(2)得,.(1分)

對(duì)任意恒成立,即,恒成立 (3分)

,∴當(dāng)時(shí),有最大值4,故.                   (5分)

,∴存在,使得對(duì)任意,有.所以.(7分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).
(1)若,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

(本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

(文)已知數(shù)列中,

(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;

(2)求數(shù)列的前項(xiàng)和

(3)設(shè)數(shù)列的前項(xiàng)和為,若對(duì)任意恒成立,求的最小值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題

本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.

設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).

(1)求k值;

(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;

(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的的取值范圍;

(3)若f(1)=,且g(x)=a 2xa - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)

在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).

(1)若,,,求方程在區(qū)間內(nèi)的解集;

(2)若點(diǎn)是過(guò)點(diǎn)且法向量為的直線上的動(dòng)點(diǎn).當(dāng)時(shí),設(shè)函數(shù)的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式的解集為集合. 若恒成立,求實(shí)數(shù)的最大值;

(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時(shí),試寫出一個(gè)條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對(duì)稱,且在取得最小值”.(說(shuō)明:請(qǐng)寫出你的分析過(guò)程.本小題將根據(jù)你對(duì)問(wèn)題探究的完整性和在研究過(guò)程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案