函數(shù)y=|tanx|的增區(qū)間為
 
考點(diǎn):正切函數(shù)的圖象
專題:三角函數(shù)的圖像與性質(zhì)
分析:正切函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
解答:解:當(dāng)tanx≥0時(shí),y=|tanx|=tanx,為增函數(shù),此時(shí)kπ≤x<kπ+
π
2
,k∈Z,
當(dāng)tanx<0時(shí),y=|tanx|=-tanx為減函數(shù),此時(shí)kπ-
π
2
<x<kπ,k∈Z,
故函數(shù)的增區(qū)間為[kπ,kπ+
π
2
),k∈Z,
故答案為:[kπ,kπ+
π
2
),k∈Z
點(diǎn)評(píng):本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)正切函數(shù)的圖象和性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)異面直線l1,l2的方向向量分別為
a
=(-1,1,0),
b
=(1,0,-1),則異面直線l1,l2所成角的大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U=R,集合A={x|x2+x≥0},則集合∁UA=( 。
A、[-1,0]
B、(-1,0)
C、(-∞,-1]∪[0,+∞)
D、[0,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=(x-2)ln(x2-4x+4)-(x-2)ln4的零點(diǎn)個(gè)數(shù)為( 。
A、2B、1C、3D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列各式中正確的是( 。
A、tan
4
7
π>tan
3
7
π
B、tan(-
13
4
π)<tan(-
17
5
π)
C、tan4>tan3
D、tan281°>tan665°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

總體由編號(hào)為01,02,…,19,20的20個(gè)個(gè)體組成.利用下面的隨機(jī)數(shù)表選取5個(gè)個(gè)體,選取方法從隨機(jī)數(shù)表第1行的第5列和第6列數(shù)字開(kāi)始由左到右一次選取兩個(gè)數(shù)字,則選出來(lái)的第5個(gè)個(gè)體的編號(hào)為( 。
7816       6572      0802      6314       0702       4369       9728    0198
3204       9234      4934      8200       3623       4869       6938       7481
A、08B、07C、02D、01

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中是冪函數(shù)的是( 。
A、y=2x
B、y=2x
C、y=x2
D、y=
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正四棱錐底面正方形的邊長(zhǎng)為4,高與斜高的夾角為45°,則正四棱錐的側(cè)面積為( 。
A、4
2
B、8
2
C、16
2
D、32
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐P-ABC中,PA,PB,PC兩兩互相垂直,且PA=3,PB=2,PC=1,設(shè)M是底面三角形ABC內(nèi)一動(dòng)點(diǎn),定義:f(M)=(m,n,p),其中m,n,p分別表示三棱錐M-PAB,M-PBC,M-PAC的體積,若f(M)=(
1
2
,2x,y),且
1
x
+
a
y
≥8恒成立,則正實(shí)數(shù)a的最小值是( 。
A、2+
2
B、2-
2
C、3-2
2
D、6-2
2

查看答案和解析>>

同步練習(xí)冊(cè)答案