【題目】已知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),記的最小值為,求的解析式.
【答案】(1)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2).
【解析】
(1)當(dāng)時(shí),求出函數(shù)的解析式、定義域和導(dǎo)數(shù),分別解不等式和,可得出函數(shù)的單調(diào)遞增區(qū)間和遞減區(qū)間;
(2)求得,然后分、和三種情況討論,分析函數(shù)在區(qū)間上的單調(diào)性,進(jìn)而可得出函數(shù)在區(qū)間上的最大值,由此可得出的解析式.
(1)當(dāng)時(shí),,定義域?yàn)?/span>,
.
令,得或;令,得.
所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;
(2),,
令,得或.
①當(dāng)時(shí),對(duì)任意的,,
此時(shí),函數(shù)在區(qū)間上單調(diào)遞增,則;
②當(dāng)時(shí),若,則;若,則.
所以,函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.
所以,;
③當(dāng)時(shí),對(duì)任意的,.
此時(shí),函數(shù)在區(qū)間上單調(diào)遞減,則.
綜上所述,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四色猜想是近代數(shù)學(xué)難題之一,四色猜想的內(nèi)容是:“任何一張地圖最多用四種顏色就能使具有共同邊界的國(guó)家著上不同的顏色”,如圖,一張地圖被分成了五個(gè)區(qū)域,每個(gè)區(qū)域只使用一種顏色,現(xiàn)有4種顏色可供選擇(四種顏色不一定用完),則滿足四色猜想的不同涂色種數(shù)為__________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某報(bào)告顯示:我國(guó)農(nóng)民工收入持續(xù)快速增長(zhǎng).某地區(qū)農(nóng)民工人均月收入增長(zhǎng)率如圖1,并將人均月收入繪制成如圖2的不完整的條形統(tǒng)計(jì)圖.
圖1 圖2
根據(jù)以上統(tǒng)計(jì)圖,以下說(shuō)法錯(cuò)誤的是( )
A.2013年農(nóng)民工人均月收入的增長(zhǎng)率的是10%
B.2011年農(nóng)民工人均月收入是2205元
C.小明看了統(tǒng)計(jì)圖后說(shuō):“農(nóng)民工2012年的人均月收入比2011年的少了”
D.2009年到2013年這五年中,2013年農(nóng)民工人均月收入最高
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)式過(guò)馬路”的大意是湊夠一撮人即可走,跟紅綠燈無(wú)關(guān).部分法律專家的觀點(diǎn)為“交通規(guī)則的制定目的就在于服務(wù)城市管理,方便行人,而‘中國(guó)式過(guò)馬路’是對(duì)我國(guó)法治化進(jìn)程的嚴(yán)重阻礙,反應(yīng)了國(guó)人規(guī)則意識(shí)的淡薄.”某新聞媒體對(duì)此觀點(diǎn)進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“中立”和“不支持”態(tài)度的人數(shù)如表所示:
支持 | 中立 | 不支持 | |
20歲以下 | 800 | 450 | 200 |
20歲及以上 | 100 | 150 | 300 |
在所有參與調(diào)查的人中,用分層隨機(jī)抽樣的方法抽取人,已知從持“支持”態(tài)度的人抽取了45人,則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,,其中.
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二項(xiàng)式的二項(xiàng)式系數(shù)和為256.
(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中各項(xiàng)的系數(shù)和;
(3)展開(kāi)式中是否有有理項(xiàng),若有,求系數(shù);若沒(méi)有,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,左、右焦點(diǎn)分別是,以為圓心、3為半徑的圓與以為圓心、1為半徑的圓相交,交點(diǎn)在橢圓C上.
(1)求橢圓C的方程;
(2)直線與橢圓C交于A,B兩點(diǎn),點(diǎn)M是橢圓C的右頂點(diǎn)直線AM與直線BM分別與y軸交于點(diǎn)PQ,試問(wèn)以線段PQ為直徑的圓是否過(guò)x軸上的定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知四邊形為直角梯形,,,且,為的中點(diǎn),將沿折到位置(如圖2),使得平面,連結(jié),構(gòu)成一個(gè)四棱錐.
(1)求證;
(2)求二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com