已知是三條不同的直線,是三個不同的平面,下列命題:
①若,,則;          ②若,則
③若,,則;  ④若,則.
其中真命題是_      __.(寫出所有真命題的序號).
①④

試題分析:根據(jù)線面平行,線線垂直,面面垂直的判定與性質,可以得到①④是正確的.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是邊長為的正方形, ,且點滿足 .

(1)證明:平面 .
(2)在線段上是否存在點,使得平面?若存在,確定點的位置,若不存在請說明理由 .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.

(1)求證:PC⊥BC
(2)求點A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖1,矩形中,,,分別為、邊上的點,且,,將沿折起至位置(如圖2所示),連結、,其中.

(Ⅰ)求證:平面;
(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐中,點分別是棱的中點.

(1)求證://平面
(2)若平面平面,,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知平行六面體ABCD—A1B1C1D1的底面為正方形,O1、O分別為上、下底面的中心,且A1在底面ABCD上的射影是O。

(Ⅰ)求證:平面O1DC⊥平面ABCD;
(Ⅱ)若∠A1AB=60°,求平面BAA1與平面CAA1的夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,已知三棱錐A-BPC中,AP⊥PC,AC⊥BC,M為AB的中點,D為PB的中點,且△PMB為正三角形.

(1)求證:DM∥平面APC; (2)求證:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中錯誤的是 (  ).
A.如果平面α⊥平面β,那么平面α內一定存在直線平行于平面β
B.如果平面α不垂直于平面β,那么平面α內一定不存在直線垂直于平面β
C.如果平面α⊥平面γ,平面β⊥平面γ,αβl,那么l⊥平面γ
D.如果平面α⊥平面β,那么平面α內所有直線都垂直于平面β

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是不同的直線,是不同的平面,下列命題中正確的是(    )
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

同步練習冊答案