如圖,在三棱錐中,點分別是棱的中點.

(1)求證://平面;
(2)若平面平面,求證:
(1)詳見解析;(2)詳見解析.

試題分析:(1)這是一個證明直線和平面平行的問題,考慮直線與平面平行的判定定理,可找面外線平行于面內線,本題容易找到,結論自然得證;(2)因為條件中有平面與平面垂直,故可考慮平面與平面垂直的判定定理,在一平面內作垂直于交線的直線平行于另一平面,再得到線線垂直,再證線面垂直,再得線線垂直,問題不難解決.
試題解析:(1)在中,、分別是、的中點,所以
平面平面,所以平面.      6分
(2)在平面內過點,垂足為.因為平面平面,平面平面平面,所以平面,      8分
平面,所以,                  10分
,,平面平面,
所以平面,                         12分
平面,所以.                  14分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平行四邊形ABCD(圖1)中,AB=4,BC=5,對角線AC=3,將三角形ACD沿AC折起至PAC位置(圖2),使二面角為600,G,H分別是PA,PC的中點.

(1)求證:PC平面BGH;
(2)求平面PAB與平面BGH夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,菱形ABCD中,,平面ABCD,平面ABCD,

(1)求證:平面BDE;
(2)求銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC與BD的交點M恰好是AC中點,N為線段PB的中點,G在線段BM上,且

(Ⅰ)求證:AB⊥PD;
(Ⅱ)求證:GN//平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

是互不重合的直線,是互不重合的平面,給出下列命題:
①若
②若
③若不垂直于,則不可能垂直于內的無數(shù)條直線;
④若;
⑤若.
其中正確命題的序號是     .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知是三條不同的直線,是三個不同的平面,下列命題:
①若,,則;          ②若,,則;
③若,,則;  ④若,則.
其中真命題是_      __.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體的棱長為,動點P在對角線上,過點P作垂直于的平面,記這樣得到的截面多邊形(含三角形)的周長為y,設x,則當時,函數(shù)的值域為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

是兩條不同的直線,是兩個不同的平面,下列命題中正確的是(    )
A.若,
B.若,則
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過兩平行平面α、β外的點P兩條直線AB與CD,它們分別交α于A、C兩點,交β于B、D兩點,若PA=6,AC=9,PB=8,則BD的長為_______.

查看答案和解析>>

同步練習冊答案