分析 (1)把點(6,3)代入得,2=loga(6-a),2=logaa2,解方程即可;
(2)代入,整理可得∴[2x+3]2≥2x+2+3+m,利用換元法得出t2+2t+6≥m恒成立,只需求出左式的最小值即可.
解答 解:(1)把點(6,3)代入得,
3=loga(6-a)+1,
∴l(xiāng)ogaa2=loga(6-a)
∴a2+a-6=0,
∴a=2
(2)h(x)=2x+1,F(xiàn)(x)=[2x+3]2,G(x)=2x+2+5,
∴[2x+3]2≥2x+2+3+m,
∴令t=2x,t>0,
∴t2+2t+6≥m恒成立,
∵t>0,得t2+2t+6≥6,
∴m≤6.
點評 考查了對數(shù)方程的解法和恒成立問題的轉(zhuǎn)換,屬于常規(guī)題型,應(yīng)熟練掌握.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,3) | B. | (-5,-3) | C. | (-5,3) | D. | (-5,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2477 | B. | 2427 | C. | 2427.5 | D. | 2477.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∉R,使得$x_0^2>4$ | B. | ?x0∉R,使得$x_0^2≤4$ | ||
C. | ?x∈R,x2>4 | D. | ?x∈R,x2≤4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 在正三棱錐中,斜高大于側(cè)棱 | |
B. | 有一條側(cè)棱垂直于底面的棱柱是直棱柱 | |
C. | 底面是正方形的棱錐是正四棱錐 | |
D. | 有一個面是多邊形,其余各面均為三角形的幾何體是棱錐 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com