20.若函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$在點(diǎn)P(2,f(2))處的切線為$y=4x-\frac{10}{3}$.
(1)求函數(shù)f(x)的解析式;
(2)討論方程f(x)=k實(shí)數(shù)解的個(gè)數(shù).

分析 (1)求得函數(shù)的導(dǎo)數(shù),求得切線的斜率和切點(diǎn),解方程可得a,b,進(jìn)而得到f(x)的解析式;
(2)求出f(x)的導(dǎo)數(shù),求得單調(diào)區(qū)間和極值,結(jié)合圖象,即可得到方程解的情況.

解答 解:(1)∵函數(shù)$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$,
f'(x)=x2+2ax-b,
根據(jù)題意得f'(2)=4,即4a-b=0,
又$f(2)=8-\frac{10}{3}$,即有$\frac{8}{3}$+4a-2b+4=8-$\frac{10}{3}$,
解得$a=\frac{1}{2},b=2$,
∴$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}{x^2}-2x+4$;
(2)∵$f(x)=\frac{1}{3}{x^3}+\frac{1}{2}{x^2}-2x+4$,
∴f'(x)=x2+x-2=(x+2)(x-1),
令f'(x)>0解得x<-2或x>1,f'(x)<0解得-2<x<1,
即有f(x)的增區(qū)間為(-∞,-2),(1,+∞),減區(qū)間為(-2,1),
即有x=1處取得極小值,且為$\frac{17}{2}$,x=-2處取得極大值,且為$\frac{22}{3}$.
則當(dāng)k<$\frac{17}{6}$或k>$\frac{22}{3}$時(shí),方程k=f(x)有一個(gè)解;
當(dāng)k=$\frac{17}{6}$或k=$\frac{22}{3}$時(shí),方程k=f(x)有兩個(gè)解;
當(dāng)$\frac{17}{6}$<k<$\frac{22}{3}$時(shí),方程k=f(x)有三個(gè)解.

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)區(qū)間、極值,考查數(shù)形結(jié)合的思想方法,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=log3x,則f(-9)的值為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.函數(shù)y=lg(x2-2x)的單調(diào)增區(qū)間為( 。
A.(2,+∞)B.(1,+∞)C.(-∞,1)D.(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一條漸近線的斜率為$\sqrt{2}$,且右焦點(diǎn)與拋物線${y^2}=4\sqrt{3}x$的焦點(diǎn)重合,則該雙曲線的方程為(  )
A.$\frac{x^2}{4}-\frac{y^2}{2}=1$B.$\frac{x^2}{3}-\frac{y^2}{2}=1$C.$\frac{x^2}{2}-{y^2}=1$D.${x^2}-\frac{y^2}{2}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=loga(x-a)+1(a>0,且a≠1)過(guò)點(diǎn)(6,3).
(1)求實(shí)數(shù)a的值.
(2)設(shè)函數(shù)h(x)=ax+1,函數(shù)F(x)=[h(x)+2]2的圖象恒在函數(shù)G(x)=h(2+x)+m+2的圖象上方,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角等于$\frac{π}{3}$,若|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,則2$\overrightarrow{a}$-3$\overrightarrow$的模長(zhǎng)為$\sqrt{61}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算:(0.064)${\;}^{-\frac{1}{3}}$+[(-2)5]${\;}^{-\frac{2}{5}}$-($\frac{1}{16}$)0.75+sin210°+log2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列語(yǔ)句中是命題的是( 。
A.|x+a|B.0∈NC.集合與簡(jiǎn)易邏輯D.真子集

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知圓C1:(x-1)2+y2=1,圓C2:(x-3)2+(y-1)2=4,它們的位置關(guān)系是相交.

查看答案和解析>>

同步練習(xí)冊(cè)答案