3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.過橢圓右焦點(diǎn)且垂直于x軸的直線與橢圓交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B上方),且|AB|=1,點(diǎn)P是橢圓C上位于x軸上方的動(dòng)點(diǎn),且|F1P|+|F2P|=4.
(I)求橢圓C的方程;
(2)若直線PF1,PF2與直線y=3分別交于G,H兩點(diǎn),求線段GH長度的最小值;在線段GH長度取得最小值的情況下,若點(diǎn)T是橢圓C上一點(diǎn),求△TPF1面積的最大值.

分析 (1)根據(jù)橢圓定義得出a=2,把A點(diǎn)坐標(biāo)代入橢圓方程即可求出b,從而得出橢圓方程;
(2)根據(jù)三角形相似及P點(diǎn)縱坐標(biāo)的范圍即可求出GH的最小值,求出PF1的距離及所在直線方程,設(shè)T(2cosθ,sinθ),利用距離公式求出最大距離即可得出三角形的最大面積.

解答 解:(1)∵|F1P|+|F2P|=2a=4,∴a=2,
把A(c,$\frac{1}{2}$)代入橢圓方程得$\frac{{c}^{2}}{4}+\frac{1}{4^{2}}=1$,又c2=a2-b2=4-b2,
∴b2=1,
∴橢圓方程為$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)F1F2=2c=2$\sqrt{{a}^{2}-^{2}}$=2$\sqrt{3}$,
設(shè)P(x0,y0),∵△PF1F2∽△PGH,
∴$\frac{GH}{{F}_{1}{F}_{2}}$=$\frac{3-{y}_{0}}{{y}_{0}}$=$\frac{3}{{y}_{0}}$-1,∴GH=2$\sqrt{3}$($\frac{3}{{y}_{0}}$-1),
∵0<y0≤1,∴當(dāng)y0=1時(shí),GH取得最小值4$\sqrt{3}$.
當(dāng)y0=1時(shí),P(0,1),F(xiàn)1(-$\sqrt{3}$,0),∴PF1=2,直線PF1的方程為$\sqrt{3}$x-3y+3=0,
設(shè)T(2cosθ,sinθ),則T到直線PF1的距離d=$\frac{|2\sqrt{3}cosθ-3sinθ+3|}{2\sqrt{3}}$=$\frac{|\sqrt{21}cos(θ+φ)+3|}{2\sqrt{3}}$,
∴當(dāng)cos(θ+φ)=1時(shí),d取得最大值$\frac{\sqrt{7}+\sqrt{3}}{2}$,
∴△TPF1面積的最大值為$\frac{1}{2}×2×\frac{\sqrt{7}+\sqrt{3}}{2}$=$\frac{\sqrt{7}+\sqrt{3}}{2}$.

點(diǎn)評(píng) 本題考查令橢圓的性質(zhì),直線與橢圓的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.一射手對(duì)同一目標(biāo)進(jìn)行4次射擊,且射擊結(jié)果之間互不影響,已知至少命中一次的概率為$\frac{80}{81}$,則此射手的命中率為( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)C、D、E是線段AB的四等分點(diǎn),O為直線AB外的任意一點(diǎn),若$\overrightarrow{OC}$+$\overrightarrow{OD}$+$\overrightarrow{OE}$=m($\overrightarrow{OA}$+$\overrightarrow{OB}$),則實(shí)數(shù) m的值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在平面直角坐標(biāo)系中,點(diǎn)O(0,0),P(4,3),將向量$\overrightarrow{OP}$繞點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)$\frac{2π}{3}$后得向量$\overrightarrow{OQ}$,則點(diǎn)Q的坐標(biāo)是( 。
A.($\frac{{-3+4\sqrt{3}}}{2}$,$\frac{{-4+3\sqrt{3}}}{2}$)B.($\frac{{-3+4\sqrt{3}}}{2}$,$\frac{{-4-3\sqrt{3}}}{2}$)C.($\frac{{-4+3\sqrt{3}}}{2}$,$\frac{{-3-4\sqrt{3}}}{2}$)D.($\frac{{-4-3\sqrt{3}}}{2}$,$\frac{{-3+4\sqrt{3}}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosB=2a-$\sqrt{3}$b.
(Ⅰ)求C;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)f(x)=Asin(2x+φ)(|φ|≤$\frac{π}{2}$,A>0)部分圖象如圖所示,且f(a)=f(b)=0,對(duì)不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=$\sqrt{3}$,則( 。
A.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是減函數(shù)B.f(x)在(-$\frac{5π}{12}$,$\frac{π}{12}$)上是增函數(shù)
C.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是減函數(shù)D.f(x)在($\frac{π}{3}$,$\frac{5π}{6}$)上是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在平面直角坐標(biāo)系xOy中,橢圓E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且過點(diǎn)(1,$\frac{3}{2}$),
(1)求橢圓E的方程;
(2)若點(diǎn)A,B分別是橢圓E的左、右頂點(diǎn),直線l經(jīng)過點(diǎn)B且垂直于x軸,點(diǎn)P是橢圓上異于A,B的任意一點(diǎn),直線AP交l于點(diǎn)M;
(i)設(shè)直線OM的斜率為k1,直線BP的斜率為k2,求證k1k2為定值;
(ii)設(shè)過點(diǎn)M垂直于PB的直線為m,求證:直線m過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知f(x)=x|x-a|+b,x∈R.
(1)當(dāng)a=1,b=1時(shí),若$f(x)=\frac{5}{4}$,求x的值;
(2)若b<0,且對(duì)任何x∈(0,1]不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知四棱錐S-ABCD是底面邊長為$2\sqrt{3}$的菱形,且$∠BAD=\frac{π}{3}$,若$∠ASC=\frac{π}{2}$,SB=SD
(1)求該四棱錐體積的取值范圍; 
(2)當(dāng)點(diǎn)S在底面ABCD上的射影為三角形ABD的重心G時(shí),求直線SA與平面SCD夾角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案