18.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2ccosB=2a-$\sqrt{3}$b.
(Ⅰ)求C;
(Ⅱ)若a=2,△ABC的面積為$\sqrt{3}$,求c.

分析 (Ⅰ)由已知及正弦定理得:2sinCcosB=2sinA-$\sqrt{3}$sinB,利用兩角和的正弦函數(shù)公式整理可得cosC=$\frac{\sqrt{3}}{2}$,
結(jié)合C的范圍即可得解.
(Ⅱ)由△ABC的面積為$\sqrt{3}$,得$\frac{1}{2}$absinC=$\sqrt{3}$,可解得b,由余弦定理即可解得c的值.

解答 解:(Ⅰ)由已知及正弦定理得:2sinCcosB=2sinA-$\sqrt{3}$sinB,…(2分)
即:2sinCcosB=2sin(B+C)-$\sqrt{3}$sinB,…(3分)
所以:2sinCcosB=2sinCcosB+2cosCsinB-$\sqrt{3}$sinB,可得:cosC=$\frac{\sqrt{3}}{2}$,
所以:C=$\frac{π}{6}$…(6分)
(Ⅱ)由△ABC的面積為$\sqrt{3}$,得$\frac{1}{2}$absinC=$\sqrt{3}$,
可得:$\frac{1}{2}×2×b×\frac{1}{2}$=$\sqrt{3}$,
可得:b=2$\sqrt{3}$,…(9分)
由余弦定理可得:c2=a2+b2-2abcosC=(2$\sqrt{3}$)2+22-2×$2\sqrt{3}×2×\frac{\sqrt{3}}{2}$,
解得:c=2.…(12分)

點(diǎn)評(píng) 本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}}\right.$(其中θ為參數(shù)),點(diǎn)P(-1,0),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線C2的極坐標(biāo)方程為ρcosθ-ρsinθ+1=0.
(1)分別寫出曲線C1的普通方程與直線C2的參數(shù)方程;
(2)若曲線C1與直線C2交于A,B兩點(diǎn),求|PA|•|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知正實(shí)數(shù)x,y滿足xy=x+2y+6,則$\frac{1}{x}$+$\frac{1}{2y}$的最小值為(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知曲線C的極坐標(biāo)方程是ρ=4sinθ,設(shè)直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=t-1}\\{y=2t+1}\end{array}\right.$(t為參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程;
(Ⅱ)設(shè)直線l與曲線C的交點(diǎn)是M,N,O為坐標(biāo)原點(diǎn),求△OMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若∠A=120°,c=3,a=7,則△ABC的面積S=$\frac{15\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.過橢圓右焦點(diǎn)且垂直于x軸的直線與橢圓交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B上方),且|AB|=1,點(diǎn)P是橢圓C上位于x軸上方的動(dòng)點(diǎn),且|F1P|+|F2P|=4.
(I)求橢圓C的方程;
(2)若直線PF1,PF2與直線y=3分別交于G,H兩點(diǎn),求線段GH長(zhǎng)度的最小值;在線段GH長(zhǎng)度取得最小值的情況下,若點(diǎn)T是橢圓C上一點(diǎn),求△TPF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=logax(a>0且a≠1)和函數(shù)g(x)=sin$\frac{π}{2}$x,若f(x)與g(x)的圖象有且只有3個(gè)交點(diǎn),則a的取值范圍是($\frac{1}{7}$,$\frac{1}{3}$)∪(5,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖,記長(zhǎng)方體ABCD-A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的幾何體為Ω,則下列結(jié)論中不正確的是( 。
A.EH∥FGB.四邊形EFGH是平行四邊形
C.Ω是棱柱D.Ω是棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(4,2),B(m,1),C(2,3),D(1,6).
(1)若$\overrightarrow{AB}$∥$\overrightarrow{CD}$,求向量$\overrightarrow{BD}$在$\overrightarrow{AC}$方向上的投影;
(2)若向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$中存在互相垂直的兩個(gè)向量,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案