分析 利用任意角的三角函數(shù)的定義求得tanθ,再利用同角三角函數(shù)的基本關(guān)系、二倍角的正弦公式,求得sin2θ的值
解答 解:∵角θ的頂點在平面直角坐標系xOy原點O,始邊為x軸正半軸,終邊在直線y=3x上,
∴tanθ=3
∴sin2θ=$\frac{2sinθcosθ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{2tanθ}{1+ta{n}^{2}θ}$=$\frac{6}{10}$=$\frac{3}{5}$,
故答案為:$\frac{3}{5}$.
點評 本題主要考查任意角的三角函數(shù)的定義,同角三角函數(shù)的基本關(guān)系、二倍角的正弦公式,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | T1,T2,T3,T4中至少有一個為正數(shù) | B. | T1,T2,T3,T4中至少有一個為負數(shù) | ||
C. | T1,T2,T3,T4中至多有一個為正數(shù) | D. | T1,T2,T3,T4中至多有一個為負數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 以直角三角形的一直角邊為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓錐 | |
B. | 以直角梯形的一腰為軸旋轉(zhuǎn)所得的旋轉(zhuǎn)體是圓臺 | |
C. | 有一個面是多邊形,其余各面都是三角形的幾何體叫做棱錐 | |
D. | 圓錐的側(cè)面展開圖為扇形,這個扇形的半徑為圓錐底面圓的半徑 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com