8.已知直線y=ax+1與雙曲線3x2-y2=1相交于A,B兩點,O為坐標原點.
(1)求a的取值范圍;
(2)如果OA與OB垂直,求a的值.

分析 (1)根據(jù)直線和雙曲線的位置關系,即可求a的取值范圍;
(2)根據(jù)條件以AB為直徑的圓過坐標原點,消去y,利用根與系數(shù)之間的關系即可求實數(shù)a的值.

解答 解:(1)由直線y=ax+1與雙曲線3x2-y2=1,
消去y,得(3-a2)x2-2ax-2=0,
依題意得$\left\{\begin{array}{l}{3-{a}^{2}≠0}\\{4{a}^{2}+8(3-{a}^{2})>0}\end{array}\right.$,
即-$\sqrt{6}$<a<$\sqrt{6}$且a≠±$\sqrt{3}$.
(2)設A(x1,y1),B(x2,y2),
∵(3-a2)x2-2ax-2=0,
∴x1+x2=$\frac{2a}{3-{a}^{2}}$,x1x2=$\frac{-2}{3-{a}^{2}}$,
∵以AB為直徑的圓過坐標原點,
∴OA⊥OB,
即x1x2+y1y2=0,
則x1x2+(ax1+1)(ax2+1)=0,
則(a2+1)x1x2+a(x1+x2)+1=0,
∴(a2+1)•$\frac{-2}{3-{a}^{2}}$+a•$\frac{2a}{3-{a}^{2}}$+1=0,
解得a=±1,滿足條件.

點評 本題主要考查直線和圓錐曲線的位置關系的判斷和應用,聯(lián)立方程利用根與系數(shù)之間的關系是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.在區(qū)域$\left\{\begin{array}{l}{x+y-\sqrt{2}≤0}\\{x-y+\sqrt{2}≥0}\\{y≥0}\end{array}\right.$內(nèi)任取一點P,求點P落在單位圓x2+y2=1內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設全集U=R,A={x|1≤x≤3},B={x|2a<x<a+3}
(Ⅰ)當a=1時,求(CUA)∩B;
(Ⅱ)若(CUA)∩B=B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設點P(x,y),則“x=-2且y=1”是“點P在直線l:x+y+1=0上”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設函數(shù)f(x)=|2x-1|
(1)解關于x的不等式f(2x)≤f(x+1)
(2)若實數(shù)a,b滿足a+b=2,求f(a2)+f(b2)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知|$\overrightarrow a|$=2,|$\overrightarrow b$|=1,$(\overrightarrow a-\overrightarrow b)•\overrightarrow b=0$,則$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,側(cè)面PAD是正三角形,且平面PAD⊥平面ABCD,O為棱AD的中點.
(1)求證:PO⊥平面ABCD;
(2)求二面角A-PD-B的大。
(3)求C點到平面PDB的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知全集U=R,A={x|x≥3},B={x|x2-8x+7≤0},C={x|x≥a-1}
(1)求A∩B,A∪B;
(2)若A∩C=C,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,角A、B、C所對的邊分別為a、b、c且acosC+$\frac{1}{2}$c=b,則∠A=( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

同步練習冊答案