【題目】定義域?yàn)?/span>R的偶函數(shù)滿足:對(duì),,且當(dāng)時(shí),若函數(shù)(0,+)上至少有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為

A. 0,B. 0,C. 0,D. 0,

【答案】A

【解析】

解:由fx+2)=fx)﹣f1)得fx+2+f1)=fx),以﹣xx,得f(﹣x+2+f1)=f(﹣x),

由于fx)為偶函數(shù),所以fx)=f(﹣x),得出fx+2)=f(﹣x+2,可知fx)圖象以x2為對(duì)稱軸.

fx+2)=fx)﹣f1),令x=﹣1,得出f1)=f(﹣1)﹣f1)=0,所以fx+2)=fx)周期T2

作出fx)的圖象,

ylogax+1)的圖象與fx)的圖象至少有三個(gè)交點(diǎn),即有loga2+1)>f2)=﹣20a1,解得

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重(單位:)與身高(單位:)具有線性相關(guān)關(guān)系。根據(jù)組樣本數(shù)據(jù),用最小二乘法建立的回歸方程為,則下列結(jié)論中不正確的是( )

A.具有正的線性相關(guān)關(guān)系

B.回歸直線過(guò)樣本點(diǎn)的中心

C.若該大學(xué)某女生身高增加,則其體重約增加

D.若該大學(xué)某女生身高為,則可斷定其體重必為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)函數(shù)的圖象上一點(diǎn)作傾斜角互補(bǔ)的兩條直線,分別與交與異于,兩點(diǎn).

1)求證:直線的斜率為定值;

2)如果,兩點(diǎn)的橫坐標(biāo)均不大于0,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為,在同一平面直角坐標(biāo)系中,將曲線上的點(diǎn)按坐標(biāo)變換得到曲線,以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系.

)求曲線的極坐標(biāo)方程;

)若過(guò)點(diǎn)(極坐標(biāo))且傾斜角為的直線與曲線交于兩點(diǎn),弦的中點(diǎn)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)).

(1)求的直角坐標(biāo)方程;

(2)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次數(shù)學(xué)考試中,考生的成績(jī)號(hào)服從一個(gè)正態(tài)分布,即.

1)試求考試成績(jī)位于區(qū)間上的概率是多少?

2)若這次考試共有2000名考生,試估計(jì)考試成績(jī)?cè)?/span>的考生大約有多少人?

(參考數(shù)據(jù):;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù),其中a>1.

(1)求實(shí)數(shù)m的值;

(2)討論函數(shù)f(x)的增減性;

(3)當(dāng)時(shí),f(x)的值域是(1,+∞),求n與a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)F1F2是橢圓Cab0)的左、右焦點(diǎn),直線ykxk0)與橢圓C交于A,B.已知橢圓C的焦距是2,四邊形AF1BF2的周長(zhǎng)是4.

1)求橢圓C的方程;

2)直線AF1,BF1分別與橢圓C交于M,N,求MNF1面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘數(shù)學(xué)家阿波羅尼奧斯(約公元前262~公元前190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,他證明過(guò)這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)kk0,k≠1)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.在平面直角坐標(biāo)系中,設(shè)A(﹣3,0),B30),動(dòng)點(diǎn)M滿足2,則動(dòng)點(diǎn)M的軌跡方程為()

A. x52+y216B. x2+y529

C. x+52+y216D. x2+y+529

查看答案和解析>>

同步練習(xí)冊(cè)答案