19.已知正項數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿足b1=1,b2=$\frac{5}{3}$,且bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.
(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)設(shè)cn=$\frac{1}{(2-_{n})•{2}^{{a}_{n}}}$,求數(shù)列{cn}的前n項和Tn,并證明$\frac{1}{2}$≤Tn<$\frac{10}{9}$對一切n∈N*都成立.
分析 (Ⅰ)∵bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.∴$_{2}-_{1}=\frac{2}{{a}_{1}({a}_{1}+2)}$,$\frac{2}{{a}_{1}({a}_{1}+2)}=\frac{2}{3}$,解得a1=1 (負(fù)值舍去),即數(shù)列{an}是公差為2,首項為1的等差數(shù)列,可得an=2n-1,bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$.由累加法得:$_{n}-_{1}=1-\frac{1}{2n-1}$,從而可求得$_{n}=2-\frac{1}{2n-1}$;
(Ⅱ)cn=$\frac{1}{(2-_{n})•{2}^{{a}_{n}}}$=$\frac{2n-1}{{2}^{2n-1}}$,由錯位相減法得Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$.令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,f(n+1)-f(n)=$\frac{6n+11}{{4•2}^{2n-1}}-\frac{6n+5}{{2}^{2n-1}}=\frac{-1n-9}{{2}^{2n+1}}<0$,則Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$遞增,即$\frac{1}{2}$≤Tn<$\frac{10}{9}$對一切n∈N*都成立.
解答 解:(Ⅰ)∵bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$.∴$_{2}-_{1}=\frac{2}{{a}_{1}({a}_{1}+2)}$,$\frac{2}{{a}_{1}({a}_{1}+2)}=\frac{2}{3}$,解得a1=1 (負(fù)值舍去)
即數(shù)列{an}是公差為2,首項為1的等差數(shù)列,∴an=2n-1
bn+1-bn=$\frac{2}{{a}_{n}{a}_{n+1}}$=$\frac{2}{(2n-1)(2n+1)}=\frac{1}{2n-1}-\frac{1}{2n+1}$.
$_{2}-_{1}=\frac{1}{1}-\frac{1}{3}$,
$_{3}-_{2}=\frac{1}{3}-\frac{1}{5}$,
$_{4}-_{3}=\frac{1}{5}-\frac{1}{7}$…
$_{n}-_{n-1}=\frac{1}{2(n-1)-1}-\frac{1}{2(n-1)+1}$
由累加法得:$_{n}-_{1}=1-\frac{1}{2n-1}$,∴$_{n}=2-\frac{1}{2n-1}$
(Ⅱ)∵(2-bn)2${\;}^{{a}_{n}}$=$\frac{{2}^{2n-1}}{2n-1}$∴cn=$\frac{1}{(2-_{n})•{2}^{{a}_{n}}}$=$\frac{2n-1}{{2}^{2n-1}}$,
Tn=$\frac{1}{{2}^{1}}+\frac{3}{{2}^{3}}+\frac{5}{{2}^{5}}+…+\frac{2n-3}{{2}^{2n-3}}+\frac{2n-1}{{2}^{2n-1}}$…①
$\frac{1}{{2}^{2}}$Tn=$\frac{1}{{2}^{3}}$+$\frac{3}{{2}^{5}}$+…+$\frac{2n-5}{{2}^{2n-3}}$+$\frac{2n-3}{{2}^{2n-1}}$+$\frac{2n-1}{{2}^{2n+1}}$…②
①-②得$\frac{3}{4}{T}_{n=\frac{1}{2}}+2(\frac{1}{{2}^{3}}+\frac{1}{{2}^{5}}+…+\frac{1}{{2}^{2n-1}})$-$\frac{2n-1}{{2}^{2n+1}}$
=$\frac{1}{2}+2×\frac{\frac{1}{{2}^{3}}(1-\frac{1}{{2}^{2n-2}})}{1-\frac{1}{4}}-\frac{2n-1}{{2}^{2n+1}}$
=$\frac{5}{6}-\frac{6n+5}{3•{2}^{2n+1}}$
∴Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$.
令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,
∵f(n+1)-f(n)=$\frac{6n+11}{{4•2}^{2n-1}}-\frac{6n+5}{{2}^{2n-1}}=\frac{-1n-9}{{2}^{2n+1}}<0$
∴令f(n)=$\frac{6n+5}{{2}^{2n-1}}$,當(dāng)n∈N+時遞減,則Tn=$\frac{10}{9}-\frac{1}{9}\frac{6n+5}{{2}^{2n-1}}$遞增.
∴${T}_{1}≤{T}_{n}<\frac{10}{9}$,即$\frac{1}{2}$≤Tn<$\frac{10}{9}$對一切n∈N*都成立.
點評 本題考查了數(shù)列的遞推式,數(shù)列求和,數(shù)列的單調(diào)性,屬于中檔題.