用數(shù)學(xué)歸納法證明,若f(n)=1+++…+,則n+f(1)+f(2)+…+f(n-1)=n·f(n)(n≥2,且n∈N+).

思路解析:(1)當(dāng)n=2時(shí),左邊=2+f(1)=2+1=3,

右邊=2·f(2)=2×(1+)=3,左邊=右邊,等式成立.

(2)假設(shè)n=k時(shí)等式成立,即

k+f(1)+f(2)+…+f(k-1)=kf(k).

由已知條件可得f(k+1)=f(k)+,

右邊=(k+1)·f(k+1)(先寫出右邊,便于左邊對(duì)照變形).

當(dāng)n=k+1時(shí),左邊=(k+1)+f(1)+f(2)+…+f(k-1)+f(k)

=[k+f(1)+f(2)+…+f(k-1)]+1+f(k)(湊成歸納假設(shè))

=kf(k)+1+f(k)(利用假設(shè))

=(k+1)·f(k)+1

=(k+1)·[f(k+1)-]+1

=(k+1)·f(k+1)=右邊.

∴當(dāng)n=k+1時(shí),等式也成立.

由(1)(2)可知,對(duì)一切n≥2的正整數(shù)等式都成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在觀察正整數(shù)的前n項(xiàng)平方和公式即12+22+32+…+n2=
n(n+1)(2n+1)
6
,n∈N*時(shí)發(fā)現(xiàn)它的和為關(guān)于n的三次函數(shù),于是他猜想:是否存在常數(shù)a,b,1•22+2•32+…+n(n+1)2=
n(n+1)(n+2)(an+b)
12
.對(duì)于一切n∈N*都立?
(1)若n=1,2 時(shí)猜想成立,求實(shí)數(shù)a,b的值.
(2)若該同學(xué)的猜想成立,請(qǐng)你用數(shù)學(xué)歸納法證明.若不成立,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•奉賢區(qū)一模)首項(xiàng)為正數(shù)的數(shù)列{an}滿足an+1=
an2+34
,(n∈N*)

(1)當(dāng){an}是常數(shù)列時(shí),求a1的值;
(2)用數(shù)學(xué)歸納法證明:若a1為奇數(shù),則對(duì)一切n≥2,an都是奇數(shù);
(3)若對(duì)一切n∈N*,都有an+1>an,求a1的取值范圍;
(4)以上(1)(2)(3)三個(gè)問題是從數(shù)列{an}的某一個(gè)角度去進(jìn)行研究的,請(qǐng)你類似地提出一個(gè)與數(shù)列{an}相關(guān)的數(shù)學(xué)真命題,并加以推理論證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明,若f(n)=1+++…+,則n+f(1)+f(2)+…+f(n-1)=n·f(n)(n≥2,且n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明,若fn)=1+++…+,則n+f(1)+f(2)+…+fn-1)=nfn)(n≥2且nN*).

查看答案和解析>>

同步練習(xí)冊(cè)答案