精英家教網 > 高中數學 > 題目詳情
已知函數是它的導函數,則            。

試題分析:因為函數,所以因此
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數,曲線在點處的切線為.
(1)求
(2)證明:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數有兩個極值點,且
(1)求的取值范圍,并討論的單調性;
(2)證明:

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ex,a,bR,且a>0.
⑴若a=2,b=1,求函數f(x)的極值;
⑵設g(x)=a(x-1)ex-f(x).
①當a=1時,對任意x (0,+∞),都有g(x)≥1成立,求b的最大值;
②設g′(x)為g(x)的導函數.若存在x>1,使g(x)+g′(x)=0成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

某城市為了解決人民路擁擠現象,政府決定建設高架公路,該高架公路兩端的橋墩及引橋已建好,這兩橋墩相距1280米,余下工程只需要建兩端橋墩之間的橋面和橋墩,經預測,一個橋墩的工程費用為32萬元,距離為米的相鄰兩墩之間的橋面工程費用為萬元。假設橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為萬元。(1)試寫出關于的函數關系式;(2)政府至少還需投入多少萬元資金才能啟動此工程建設,此時新建橋墩有多少個?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

函數對于總有0 成立,則=      

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax2-(a+2)x+ln x.
(1)當a=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當a>0時,若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍;
(3)若對任意x1,x2∈(0,+∞),x1<x2,且f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知為常數,且,函數, 
是自然對數的底數).
(1)求實數的值;
(2)求函數的單調區(qū)間;
(3)當時,是否同時存在實數),使得對每一個,直線與曲線都有公共點?若存在,求出最小的實數和最大的實數;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設函數,其中.
(1)討論在其定義域上的單調性;
(2)當時,求取得最大值和最小值時的的值.

查看答案和解析>>

同步練習冊答案