(本題滿分10分)設(shè)過點的直線與過點的直線相交于點M,
的斜率,的乘積為定值,求點M的軌跡方程.
M軌跡方程為.   ……10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C: 的離心率為,橢圓C上任意一點到橢圓兩焦點的距離之和為6.
(1)求橢圓C的方程;
(2)設(shè)直線與橢圓C交于A,B兩點,點P(0,1),且滿足PA=PB,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
設(shè)橢圓C的左、右焦點分別為F1、F2,A是橢圓C上的一點,,坐標原點O到直線AF1的距離為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)Q是橢圓C上的一點,過點Q的直線l x軸于點,交 y軸于點M,若,求直線l 的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面直角坐標系中點F(1,0)和直線,動圓M過點F且與直線相切。
(1)求M的軌跡L的方程;
(2)過點F作斜率為1的直線交曲線L于A、B兩點,求|AB|的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)橢圓恒過定點,則橢圓的中心到準線的距離的
最小值      ▲   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知+=1的焦點F1、F2,在直線lx+y-6=0上找一點M,求以F1、F2為焦點,通過點M且長軸最短的橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點分別為橢圓的左、右焦點,點為橢圓上任意一點,到焦點的距離的最大值為,且的最大面積為.
(I)求橢圓的方程。
(II)點的坐標為,過點且斜率為的直線與橢圓相交于兩點。對于任意的是否為定值?若是求出這個定值;若不是說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在橢圓的焦點為,點p在橢圓上,若,則      
的大小為       

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案