12.已知等差數(shù)列的第k、n、p項構(gòu)成等比數(shù)列的連續(xù)3項,如果這個等差數(shù)列不是常數(shù)列,則等比數(shù)列的公比為$\frac{n-p}{k-n}$.

分析 設(shè)首項和公差(不為0),由等比數(shù)列的定義可知q=$\frac{{a}_{n}}{{a}_{k}}$=$\frac{{a}_{p}}{{a}_{n}}$=$\frac{{a}_{p}-{a}_{n}}{{a}_{n}-{a}_{k}}$,然后利用等差數(shù)列的通項公式化簡即可.

解答 解:設(shè)等差數(shù)列首項為a1,公差為d(d≠0),
則q=$\frac{{a}_{n}}{{a}_{k}}$=$\frac{{a}_{p}}{{a}_{n}}$=$\frac{{a}_{p}-{a}_{n}}{{a}_{n}-{a}_{k}}$
=$\frac{{a}_{1}+(p-1)d-[{a}_{1}+(n-1)d]}{{a}_{1}+(n-1)d-[{a}_{1}+(k-1)d]}$
=$\frac{p-n}{n-k}$=$\frac{n-p}{k-n}$.
故答案為:$\frac{n-p}{k-n}$.

點評 此題考查了等比數(shù)列的定義和等差數(shù)列的通項公式的運用,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=|x-1|+|x-3|+ex(x≥0)的最小值是6-2ln2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知曲線C上任一點M(x,y)到點E(-1,$\frac{1}{4}$)和直線a:y=-$\frac{1}{4}$的 距離相等,圓D:(x-1)2+(y-$\frac{1}{2}$)2=r2(r>))
(Ⅰ)求曲線C的方程;
(Ⅱ)過點A(-2,1)作曲線C的切線b,并與圓D相切,求半徑r;
(Ⅲ)若曲線C與圓D恰有一個公共點B(x0,(x0+1)2),且在B點處兩曲線的切線為同一直線d,求半徑r.這時,你認為曲線C與圓D共有幾條公切線(不必證明)?(注:公切線是與兩曲線都相切的直線,切點可以不同.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.(3-2x-x2)(2x-1)6的展開式中,含x3項的系數(shù)為-588.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=x2+x+1.
(I)解不等式:|f(x+1)-f(x)|-|f(x)-f(x-1)|≤1;
(Ⅱ)求證:$\frac{1}{3}$≤$\frac{f(-x)}{f(x)}$≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.方程互化
(1)2x+3y-1=0(化為極坐標方程)
 (2)ρ=2cosθ+4sinθ(化為直角坐標方程)
(3)$\left\{\begin{array}{l}{x=3-2t}\\{y=1-4t}\end{array}\right.$(t為參數(shù))(化為普通方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖是一個幾何體的三視圖,則該幾何體的體積是( 。
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用長為36m的鋼條圍成一個長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時,其體積最大?最大體積是多少?

查看答案和解析>>

同步練習(xí)冊答案