1.已知集合A={x|x2-16<0},B={x|x2-4x-5≥0}.
( I)求A∩B,A∪B;
( II)求A∩(∁RB).

分析 運(yùn)用二次不等式的解法,分別化簡(jiǎn)集合A,B,再由交、并集和補(bǔ)集的定義,計(jì)算即可得到(I)和(II)所求集合.

解答 解:集合A={x|x2-16<0}={x|-4<x<4},
B={x|x2-4x-5≥0}={x|x|x≥5或x≤-1},
(I)A∩B={-4<x≤-1},A∪B={x|x<4或x≥5};
(II)A∩(∁RB)={x|-4<x<4}∩{x|-1<x<5}
={x|-1<x<4}.

點(diǎn)評(píng) 本題考查集合的運(yùn)算,主要是交、并和補(bǔ)集的運(yùn)算,考查二次不等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了開一家汽車租賃公司,小王調(diào)查了市面上A,B兩種車型的出租情況,他隨機(jī)抽取了某租賃公司的這兩種車型各100輛,分別統(tǒng)計(jì)了每輛車在某一周內(nèi)的出租天數(shù),得到下表的統(tǒng)計(jì)數(shù)據(jù):
A型車
出租天數(shù)1234567
車輛數(shù)51030351532
B型車
出租天數(shù)1234567
車輛數(shù)1420201615105
以這200輛車的出租頻率代替每輛車的出租概率,完成下列問題:
(Ⅰ)根據(jù)上述統(tǒng)計(jì)數(shù)據(jù),估計(jì)該公司一輛A型車,一輛B型車一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;
(Ⅱ)如果兩種車型每輛車每天出租獲得的利潤(rùn)相同,在不考慮其他因素的情況下,運(yùn)用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí),你會(huì)建議小王選擇購買哪種車型的車,請(qǐng)說明選擇的依據(jù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知等差數(shù)列的第k、n、p項(xiàng)構(gòu)成等比數(shù)列的連續(xù)3項(xiàng),如果這個(gè)等差數(shù)列不是常數(shù)列,則等比數(shù)列的公比為$\frac{n-p}{k-n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=x3+x2+mx+1是R上的單調(diào)函數(shù),則實(shí)數(shù)m的取值范圍是[$\frac{1}{3}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.中國(guó)古代數(shù)學(xué)家劉徽在《九章算術(shù)注》中,稱一個(gè)正方體內(nèi)兩個(gè)互相垂直的內(nèi)切圓柱所圍成的立體為“牟合方蓋”,如圖(1)(2),劉徽未能求得牟合方蓋的體積,直言“欲陋形措意,懼失正理”,不得不說“敢不闕疑,以俟能言者”.約200年后,祖沖之的兒子祖暅提出“冪勢(shì)既同,則積不容異”,后世稱為祖暅原理,即:兩等高立體,若在每一等高處的截面積都相等,則兩立體體積相等.如圖(3)(4),祖暅利用八分之一正方體去掉八分之一牟合方蓋后的幾何體與長(zhǎng)寬高皆為八分之一正方體的邊長(zhǎng)的倒四棱錐“等冪等積”,計(jì)算出牟合方蓋的體積,據(jù)此可知,牟合方蓋的體積與其外切正方體的體積之比為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{8}{3}$D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知${(\root{3}{x^2}+3x)^n}$展開式中各項(xiàng)系數(shù)的和比它的二項(xiàng)式系數(shù)的和大4032.
(Ⅰ)求展開式中含x4的項(xiàng);
(Ⅱ)求展開式中二項(xiàng)式系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知實(shí)數(shù)x,y滿足(3-10i)y+(-2+i)x=1-9i求:
(1)實(shí)數(shù)x,y的值;
(2)若復(fù)數(shù)Z=x+(y-2)i;求$\frac{z}{i}$ 及$|{\overline z}|$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.方程log2(x+4)+log2(x+2)=3+log2(x+6)的解是1+$\sqrt{41}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知cosα>cosβ,那么下列結(jié)論成立的是( 。
A.若α、β是第一象限角,則sinα>sinβB.若α、β是第二象限角,則tanα>tanβ
C.若α、β是第三象限角,則sinα>sinβD.若α、β是第四象限角,則tanα>tanβ

查看答案和解析>>

同步練習(xí)冊(cè)答案