【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)點(diǎn),若直線與曲線相交于、兩點(diǎn),求的值

【答案】1的普通方程為,的直角坐標(biāo)方程為;(2.

【解析】

1)在曲線的參數(shù)方程中消去參數(shù)可得出曲線的普通方程,利用兩角和的正弦公式以及可將直線的極坐標(biāo)方程化為普通方程;

2)設(shè)直線的參數(shù)方程為為參數(shù)),并設(shè)點(diǎn)、所對(duì)應(yīng)的參數(shù)分別為,利用韋達(dá)定理可求得的值.

1)由,得,

曲線的普通方程為,

,得直線的直角坐標(biāo)方程為;

2)設(shè)直線的參數(shù)方程為為參數(shù)),

代入,得,則,

設(shè)、兩點(diǎn)對(duì)應(yīng)參數(shù)分別為、,,

,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)著名的數(shù)學(xué)家秦九韶在《數(shù)書九章》提出了三斜求積術(shù).他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術(shù)就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個(gè)數(shù),小斜平方乘以大斜平方,送到上面得到的那個(gè)數(shù),相減后余數(shù)被4除,所得的數(shù)作為實(shí),1作為,開平方后即得面積.所謂實(shí)、指的是在方程中,p,q實(shí).即若的大斜、中斜、小斜分別為a,b,c,則.已知點(diǎn)DAB上一點(diǎn),,,,則的面積為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】古人云:腹有詩書氣自華.”為響應(yīng)全民閱讀,建設(shè)書香中國(guó),校園讀書活動(dòng)的熱潮正在興起.某校為統(tǒng)計(jì)學(xué)生一周課外讀書的時(shí)間,從全校學(xué)生中隨機(jī)抽取名學(xué)生進(jìn)行問卷調(diào)査,統(tǒng)計(jì)了他們一周課外讀書時(shí)間(單位:)的數(shù)據(jù)如下:

一周課外讀書時(shí)間/

合計(jì)

頻數(shù)

4

6

10

12

14

24

46

34

頻率

0.02

0.03

0.05

0.06

0.07

0.12

0.25

0.17

1

1)根據(jù)表格中提供的數(shù)據(jù),求,,的值并估算一周課外讀書時(shí)間的中位數(shù).

2)如果讀書時(shí)間按,分組,用分層抽樣的方法從名學(xué)生中抽取20.

①求每層應(yīng)抽取的人數(shù);

②若從,中抽出的學(xué)生中再隨機(jī)選取2人,求這2人不在同一層的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)討論的單調(diào)性;

2)若對(duì)任意,都有恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個(gè),標(biāo)數(shù)字5的小球有1個(gè).從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字.

(1)求取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)求隨機(jī)變量的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)生社團(tuán)對(duì)年元宵節(jié)當(dāng)天游覽磁器口古鎮(zhèn)景區(qū)的游客滿意度抽樣調(diào)查,從當(dāng)日萬名游客中隨機(jī)抽取人進(jìn)行統(tǒng)計(jì),結(jié)果如下圖的頻率分布表和頻率分布直方圖:

年齡

頻數(shù)

頻率

滿意

不滿意

合計(jì)

1)求、、的值;

2)利用頻率分布直方圖,估算游客的平均年齡和年齡的中位數(shù);

3)稱年齡不低于歲的人群為“安逸人群”,完成列聯(lián)表,并判斷是否有的把握認(rèn)為游客的滿意度與“安逸人群”人數(shù)相關(guān).

歲以上

歲以下

合計(jì)

滿意

不滿意

合計(jì)

參考公式:,其中.

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體中,

(1)求證:平面ABCD

(2),點(diǎn)FEC上,且滿足EF=2FC,求二面角FADC的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為

1)求直線l的普通方程與曲線C的直角坐標(biāo)方程;

2)設(shè)點(diǎn),直線l與曲線C交于不同的兩點(diǎn)AB,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x),f(x)是其導(dǎo)函數(shù)且滿足f(x)+f(x)>2f(1)=2,則不等式exf(x)>4+2ex的解集為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案