=(    )。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)等比數(shù)列{qn-1}(q>1)的前n項(xiàng)和為Sn,前n+1項(xiàng)的和為Sn+1,則
lim
n→∞
Sn
Sn+1
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

lim
n→∞
C0n
+
C1n
+
C2n
1+3+5+…+(2n-1)
=( 。
A.1B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:虹口區(qū)一模 題型:填空題

二項(xiàng)式(3x-1)n和(1+4x)n的展開式中,各項(xiàng)系數(shù)之和分別記為an和bn (n∈Z+),則
lim
n→∞
an-3bn
2an+4bn
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:盧灣區(qū)二模 題型:單選題

已知數(shù)列{an}是無窮等比數(shù)列,其前n項(xiàng)和是Sn,若a2+a3=2,a3+a4=1,則
lim
n→∞
Sn
的值為( 。
A.
2
3
B.
4
3
C.
8
3
D.
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東 題型:解答題

已知公比為q(0<q<1)的無窮等比數(shù)列{an}各項(xiàng)的和為9,無窮等比數(shù)列{an2}各項(xiàng)的和為
81
5

(1)求數(shù)列{an}的首項(xiàng)a1和公比q;
(2)對給定的k(k=1,2,3,…,n),設(shè)T(k)是首項(xiàng)為ak,公差為2ak-1的等差數(shù)列,求T(2)的前2007項(xiàng)之和;
(3)(理)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn
①求Sn的表達(dá)式,并求出Sn取最大值時(shí)n的值.
②求正整數(shù)m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.
(文)設(shè)bi為數(shù)列T(i)的第i項(xiàng),Sn=b1+b2+…+bn:求Sn的表達(dá)式,并求正整數(shù)m(m>1),使得
lim
n→∞
Sn
nm
存在且不等于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an},{bn} 都是公差不為0的等差數(shù)列,且
lim
n→∞
an
bn
=2
,則
lim
n→∞
b1+b2+…+b2n
na3n
 等于( 。
A.1B.
1
2
C.
1
3
D.
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:期末題 題型:解答題

定義x1,x2,…,xn的“倒平均數(shù)”為 (n∈N*).
(1)若數(shù)列{an}前n項(xiàng)的“倒平均數(shù)”為 ,求{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足:當(dāng)n為奇數(shù)時(shí),bn=1,當(dāng)n為偶數(shù)時(shí),bn=2.若Tn為{bn}前n項(xiàng)的倒平均數(shù),求 
(3)設(shè)函數(shù)f(x)=﹣x2+4x,對(1)中的數(shù)列{an},是否存在實(shí)數(shù)λ,使得當(dāng)x≤λ時(shí),f(x)≤ 對任意n∈N*恒成立?若存在,求出最大的實(shí)數(shù)λ;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于集合,定義,,設(shè),, 則(     ) w.w.w.k.s.5.u.c.o.m      

A.                    B.        

C.          D.

 

查看答案和解析>>

同步練習(xí)冊答案