已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則tana7=( 。
A.
3
B.-
3
C.±
3
D.-
3
3
∵數(shù)列{an}為等差數(shù)列,
∴a1+a13=2a7,又a1+a7+a13=4π,
∴3a7=4π,即a7=
3
,
則tana7=tan
3
=tan(π+
π
3
)=tan
π
3
=
3

故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}的前n項(xiàng)和為,若,則=            

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)是公比為的等比數(shù)列,,令,若數(shù)列有連續(xù)四項(xiàng)在集合中,則=      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列的公差,且,則數(shù)列的前n項(xiàng)和取最大值時(shí)(  )
A.6B.5 C.5或6D.6或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x+4
x
+4(x≥0),數(shù)列{an}滿足:a1=1,an+1=f(an),(n∈N*),數(shù)列b1,b2-b1,b3-b2,…,bn-bn-1是首項(xiàng)為1,公比為
1
3
的等比數(shù)列.
(1)求證:數(shù)列{
an
}為等差數(shù)列;
(2)若cn=
an
•bn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

等差數(shù)列{an}中,a1=25,S17=S9,問(wèn)數(shù)列前多少項(xiàng)之和最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列{an}的前n項(xiàng)的和為Sn,S17>0,S18<0,則在
S1
a1
S2
a2
,…,
S17
a17
中,值最大的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{an}滿足an=2an-1+2n-1(n∈N*,n≥2),且a3=25.
(1)求a1,a2
(2)是否存在實(shí)數(shù)t,使得bn=
1
2n
(an+t)(n∈N*),且{bn}為等差數(shù)列?若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè){an},{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a39+b39(  )
A.0B.100C.37D.-37

查看答案和解析>>

同步練習(xí)冊(cè)答案