設(shè){an},{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a39+b39(  )
A.0B.100C.37D.-37
∵數(shù)列{an},{bn}都是等差數(shù)列,
∴數(shù)列{an+bn}為等差數(shù)列,
又a1+b1=100,a2+b2=100,
故數(shù)列{an+bn}的公差為0,
故a39+b39=100
故選B
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知數(shù)列{an}為等差數(shù)列,且a1+a7+a13=4π,則tana7=(  )
A.
3
B.-
3
C.±
3
D.-
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知等差數(shù)列{an}的前4項(xiàng)和為10,且a2,a3,a7成等比數(shù)列,求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,a1+a3=10,a4+a6=4,則公差d等于( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等比數(shù)列{an}的各項(xiàng)都是正數(shù),等差數(shù)列{bn}滿足b7=a6,則有(  )
A.a(chǎn)3+a9>b4+b10
B.a(chǎn)3+a9≥b4+b10
C.a(chǎn)3+a9≠b4+b10
D.a(chǎn)3+a9與b4+b10的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若等差數(shù)列的首項(xiàng)是-24,且從第10項(xiàng)開始大于零,則公差d的取值范圍是( 。
A.d>
8
3
B.d<3C.
8
3
≤d<3
D.
8
3
<d≤3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}中,an>0,a12+a72+2a1a7=4,則它的前7項(xiàng)的和等于( 。
A.
5
2
B.5C.
7
2
D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

等差數(shù)列{an}中,a3+a4+a5+a6+a7=450,求a2+a8=( 。
A.180B.45C.75D.300

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知常數(shù)a、b都是正整數(shù),函數(shù)f(x)=
x
bx+1
(x>0),數(shù)列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若a=8b,且等比數(shù)列{bn}同時(shí)滿足:①b1=a1,b2=a5;②數(shù)列{bn}的每一項(xiàng)都是數(shù)列{an}中的某一項(xiàng).試判斷數(shù)列{bn}是有窮數(shù)列或是無(wú)窮數(shù)列,并簡(jiǎn)要說明理由;
(3)對(duì)問題(2)繼續(xù)探究,若b2=am(m>1,m是常數(shù)),當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是有窮數(shù)列;當(dāng)m取何正整數(shù)時(shí),數(shù)列{bn}是無(wú)窮數(shù)列,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案