(10分)
長(zhǎng)方體中,E是BC的中點(diǎn),M、N分別是AE、的中點(diǎn),.

(1) 求證:平面
(2)求異面直線AE與所成角的余弦值

(1)證明:取CD的中點(diǎn)K,連接MK、NK
分別是AE、、CD的中點(diǎn)




(2)取的中點(diǎn)F,連接EF、AF,則
四邊形是平行四邊形
(或其補(bǔ)角)是異面直線AE和所成的角
中,易得:,,
由余弦定理得:
故:異面直線AE與所成角的余弦值為。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱錐SABC中,SC丄底面ABC,,,M為SB中點(diǎn),N在AB上,滿足

(I)求點(diǎn)N到平面SBC的距離;
(II)求二面角C-MN-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在棱長(zhǎng)為2的正方體中,EBC1的中點(diǎn).求直線DE與平面ABCD所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD—A1B1C1D1中,直線與直線所成的角為   ▲  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為異面直線,直線c∥a,則c與b的位置關(guān)系是      (   )
A.相交B.異面C.平行D.異面或相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正三棱柱ABC-A1B1C1中,AB=2,AA1=1,D為A1C1的中點(diǎn),線段B1C上的點(diǎn)M滿足B1M=λB1C,若向量AD與BM的夾角小于45º,求實(shí)數(shù)λ的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正三棱柱中,,則與平面所成角的正弦值等于( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在邊長(zhǎng)為a的等邊三角形ABC中,AD⊥BC于D,沿AD折成二面角B-AD-C后,BC=a,這時(shí)二面角B-AD-C的大小為      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

有六根細(xì)木棒,其中較長(zhǎng)的兩根分別為a、a,其余四根均為a,用它們搭成三棱錐,則其中兩條較長(zhǎng)的棱所在的直線的夾角的余弦值為            (  )
A.0B.C.0或D.以上皆不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案