設(shè)橢圓+=1的兩個焦點分別為F1、F2,P為橢圓上一點,且PF1⊥PF2,則||PF1|-|PF2||的值為(   )
A.2B.6C.D.
A
|PF1|+|PF2|=6,(|PF2|+|PF2|)2=(|PF1)2+(|PF2|)2+2|PF1|·|PF2|=180,
又PF1⊥PF2,∴|PF1|2+|PF2|2=4c2=4×(45-20)=100,
∴2|PF1|·|PF2|=80,
(|PF1|-|PF2|)2=(|PF1|+|PF2|)2-4|PF1|·|PF2|=180-2×80=20,
∴||PF1|-|PF2||=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓過點,且焦點為。
(1)求橢圓的方程;
(2)當(dāng)過點的動直線與橢圓相交與兩不同點A、B時,在線段上取點,
滿足,證明:點總在某定直線上。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

中,,。若以為焦點的橢圓經(jīng)過點,則該橢圓的離心率          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

P為橢圓+=1上的一點,F1和F2是其焦點,若∠F1PF2=60°,則△F1PF2的面積為__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓上一點P(2,1)到兩焦點F1、F2的距離之和是焦距的兩倍,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)(x,y)是橢圓=1(a>b>0)在x軸上方的點,則w=x+y的最大值為_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

以橢圓+y2=1(a>1)短軸的一個端點B(0,1)為直角頂點作橢圓的內(nèi)接等腰直角三角形,問這樣的直角三角形是否存在?如果存在,請說明理由,并判斷最多能作出幾個這樣的三角形;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過橢圓4x2+2y2=1的一個焦點F1的直線與橢圓交于A、B兩點,則A、B與橢圓的另一個焦點F2構(gòu)成的△ABF2的周長是(    )
A.2                B.2                   C.2              D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)的最小值是(   )
A.B.C.-3D.

查看答案和解析>>

同步練習(xí)冊答案