設(shè)常數(shù)a>0,(ax2+
1
x
)4
的二項(xiàng)展開式中x3的系數(shù)為
3
2
,則1+a+a2+a3+…+an+…=
2
2
分析:利用二項(xiàng)展開式通項(xiàng)公式Tr+1=c4r(ax24-r(-
1
x
r,整理后,令x的次數(shù)等于3得到參數(shù)的方程,從而解得a,再結(jié)合等比數(shù)列的求和公式以及數(shù)列的極限即可得到結(jié)論.
解答:解:由二項(xiàng)展開式通項(xiàng)公式Tr+1=c4r(ax24-r(-
1
x
r,
整理得Tr+1=(-1)rc4ra4-rx 8-
5r
2
,
令8-
5r
2
=3⇒r=2時(shí),有(-1)2c42a2=
3
2
,
∴a=±
1
2

∵a>0
∴a=
1
2

lim
n→∞
1-(
1
2
)n
1-
1
2
=2.
故答案為:2.
點(diǎn)評(píng):本題主要考查二項(xiàng)式展開式特定項(xiàng)的系數(shù)的求法以及等比數(shù)列求和公式及極限的運(yùn)算,需要熟記展開式的通項(xiàng)公式,即Tr+1=cnran-rbr.是高考的常見題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]
上是減函數(shù),在[
a
,+∞)
上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)
在(0,4]上是減函數(shù),在[4,+∞)上是增函數(shù),求b的值.
(2)設(shè)常數(shù)c∈[1,4],求函數(shù)f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)當(dāng)n是正整數(shù)時(shí),研究函數(shù)g(x)=xn+
c
xn
(c>0)
的單調(diào)性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)常數(shù)a>0,(ax-
1
x
)5
展開式中x3的系數(shù)為-
5
81
,則a=
 
lim
n→∞
(a+a2+…+an)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=x+
a
x
旦(a>0)有如下的性質(zhì):在區(qū)間(0,
a
]上單調(diào)遞減,在[
a
,+∞)上單調(diào)遞增.
(1)如果函數(shù)f(x)=x+
2b
x
在(0,4]上單調(diào)遞減,在[4,+∞)上單調(diào)遞增,求常數(shù)b的值.
(2)設(shè)常數(shù)a∈[l,4],求函數(shù)y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
a
x
有如下性質(zhì):如果常數(shù)a>0,那么該函數(shù)在(0,
a
]上是減函數(shù),在[
a
,+∞)上是增函數(shù).
(1)如果函數(shù)y=x+
2b
x
(x>0)在(0,4]上是減函數(shù),在[4,+∞)是增函數(shù),求b的值;
(2)證明:函數(shù)f(x)=x+
a
x
(常數(shù)a>0)在(0,
a
]上是減函數(shù);
(3)設(shè)常數(shù)c∈(1,9),求函數(shù)f(x)=x+
c
x
在x∈[1,3]上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:朝陽區(qū)二模 題型:填空題

設(shè)常數(shù)a>0,(ax-
1
x
)5
展開式中x3的系數(shù)為-
5
81
,則a=______,
lim
n→∞
(a+a2+…+an)
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案