【題目】已知函數(shù)f(x)=sin2(ωx)﹣ (ω>0)的最小正周期為 ,若將其圖象沿x軸向右平移a個(gè)單位(a>0),所得圖象關(guān)于原點(diǎn)對(duì)稱,則實(shí)數(shù)a的最小值為( )
A.
B.
C.
D.

【答案】D
【解析】解:∵f(x)=sin2(ωx)﹣
=
=﹣ cos2ωx,
= ,解得:ω=2,
∴f(x)=﹣ cos4x,
∵將函數(shù)f(x)圖象沿x軸向右平移a個(gè)單位(a>0),得到的新函數(shù)為g(x)=﹣ cos(4x﹣4a),
∴cos4a=0,
∴4a=kπ+ ,k∈Z,
當(dāng)k=0時(shí),a的最小值為
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)與常數(shù),若恒成立,則稱為函數(shù)的一個(gè)“P數(shù)對(duì)”,設(shè)函數(shù)的定義域?yàn)?/span>,且

(1)若的一個(gè)“P數(shù)對(duì)”,且,求常數(shù)的值;

(2)若(1,1)是的一個(gè)“P數(shù)對(duì)”,且上單調(diào)遞增,求函數(shù)上的最大值與最小值;

(3)若(-2,0)是的一個(gè)“P數(shù)對(duì)”,且當(dāng)時(shí),,求k的值及在區(qū)間上的最大值與最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,C、D是以AB為直徑的圓上兩點(diǎn),AB=2AD=2,AC=BC,F(xiàn) 是AB上一點(diǎn),且AF=AB,將圓沿直徑AB折起,使點(diǎn)C在平面ABD的射影E在BD上,已知,

(1)求證:AD⊥平面BCE;

(2)求三棱錐A﹣CFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞減,q:函數(shù)y=且y>1恒成立,若p∧q為假,p∨q為真,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是幾何體的平面展開(kāi)圖,其中四邊形ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面4個(gè)結(jié)論:

直線BE與直線CF共面;②直線BE與直線AF異面;

直線EF平面PBC;④平面BCE平面PAD.

其中正確的有(  )

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知菱形ABCD的邊長(zhǎng)為6,∠ABD=30°,點(diǎn)E、F分別在邊BC、DC上,BC=2BE,CD=λCF.若 =﹣9,則λ的值為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中,函數(shù)圖像上相鄰的兩個(gè)對(duì)稱中心之間的距離為,且在處取到最小值.

(1)求函數(shù)的解析式;

(2)若將函數(shù)圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2(縱坐標(biāo)不變),再將向左平移個(gè)單位,得到函數(shù)圖象,求函數(shù)的單調(diào)遞增區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)f(x)滿足f(x+1)-f(x)=2x,且f(0)=1.

(1)求f(x)的解析式;

(2)解不等式f(x)>2x+5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C的對(duì)稱中心為原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,且點(diǎn)在該橢圓上。

(I)求橢圓C的方程;

(II)過(guò)橢圓C的左焦點(diǎn)的直線l與橢圓C相交于兩點(diǎn),若的面積為,求圓心在原點(diǎn)O且與直線l相切的圓的方程。

查看答案和解析>>

同步練習(xí)冊(cè)答案