已知圓C:x2+y2-2ax-4y+a2=0 (a>O)及直線l:x-y+3=0,當(dāng)直線l被圓C截得的弦長為2
3
時,a=(  )
A、
2
B、2-
2
C、
2
-1
D、
2
+1
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:把圓的方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程,求出圓心和半徑,求出圓心到直線的距離,再由題設(shè)條件利用勾股定理能求出a的值.
解答: 解:∵圓C:x2+y2-2ax-4y+a2=0 (a>O),
∴∵圓C:(x-a)2+(y-2)2=4的圓心為C(a,2),半徑r=2,
∴圓心C(a,2)到直線l:x-y+3=0的距離d=
|a-2+3|
2
,
∵l被圓C截得的弦長為2
3
,
∴d2+(
3
2=22,解得d=1
因此,
|a-2+3|
2
=1,解之得a=
2
-1,或a=-
2
-1
(舍)
故選:C.
點評:本題考查直線與圓的位置關(guān)系的應(yīng)用,是中檔題,解題時要注意點到直線的距離公式的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果執(zhí)行如圖程序框圖,那么輸出的S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R+,且a+b=1,則
1
a
+
1
b
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點作一條直線與拋物線相交于A、B兩點,它們的橫坐標(biāo)之和等于2,則這樣的直線( 。
A、有且僅有一條
B、有且僅有兩條
C、有無窮多條
D、不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知角θ滿足
sinθ
tanθ
>0
,且cosθ•tanθ<0,則角θ的終邊在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-1)2+(y-3
3
2=r2(r>0)的一條切線y=kx+
3
與直線x=5的夾角為
π
6
,則半徑r的值為( 。
A、
3
2
B、
3
3
2
C、
3
2
 或
3
3
2
D、
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x2-1
1-x2
,奇偶性判斷正確的是( 。
A、是偶函數(shù)但不是奇函數(shù)
B、既是奇函數(shù)又是偶函數(shù)
C、是奇函數(shù)但不是偶函數(shù)
D、既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,an=4n-3,則首項a1和公差d的值分別為(  )
A、1,3B、-3,4
C、1,4D、1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,三個內(nèi)角A、B、C的對邊分別為a、b、c,若(sinA+sinB+sinC)(a-b+c)=asinC,
(Ⅰ)求B;
(Ⅱ)若b=2
3
,求△ABC面積S的最大值.

查看答案和解析>>

同步練習(xí)冊答案