1.已知拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)H,點(diǎn)P在拋物線上,且$|PH|=\sqrt{2}|PF|$,則點(diǎn)P的橫坐標(biāo)為1.

分析 過(guò)P作PE垂直于準(zhǔn)線與E,由拋物線的定義得|PE|=|PF|;通過(guò)$|PH|=\sqrt{2}|PF|$,即可得到結(jié)論.

解答 解:過(guò)P作PE垂直于準(zhǔn)線與E.
由拋物線的定義得:|PE|=|PF|.
拋物線y2=4x的焦點(diǎn)為F,其準(zhǔn)線與x軸交于點(diǎn)H,點(diǎn)P在拋物線上,在Rt△EPH中,$|PH|=\sqrt{2}|PF|$,
所以EPFH是正方形.拋物線y2=4x的焦點(diǎn)為F(1,0),
則點(diǎn)P的橫坐標(biāo)為:1.
故答案為:1.

點(diǎn)評(píng) 本題主要考查拋物線的簡(jiǎn)單性質(zhì).解題的關(guān)鍵在于利用拋物線的定義得到|NE|=|NF|.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.18、如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=PC=1,$PB=PD=\sqrt{2}$,E為線段PD上一點(diǎn),且PE=2ED.
(Ⅰ)若F為PE的中點(diǎn),證明:BF∥平面ACE;
(Ⅱ)求二面角P-AC-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=mex-x-2(其中e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)>0在R上恒成立,求m的取值范圍;
(2)若f(x)的兩個(gè)零點(diǎn)為x1,x2,且x1<x2,求$y=({e^{x_2}}-{e^{x_1}})(\frac{1}{{{e^{x_2}}+{e^{x_1}}}}-m)$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知集合A={x∈R||x|≥2},B={x∈R|x2-x-2<0},則下列結(jié)論正確的是(  )
A.A∪B=RB.A∩B≠∅C.A∪B=∅D.A∩B=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知平面向量$\overrightarrow a=(1,2)$,$\overrightarrow b=(m,-1)$,$\overrightarrow c=(4,m)$,且$(\overrightarrow a-\overrightarrow b)⊥\overrightarrow c$,則m=( 。
A.3B.-3C.4D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.某學(xué)校在自主招生考試成績(jī)中隨機(jī)抽取100名學(xué)生的筆試成績(jī),按成績(jī)分組:第1組[160,165),第2組[165,170),第3組[170,175),第4組[175,180),第5組[180,185],得到的頻率分布直方圖如圖所示:
(1)求第3,4,5組的頻率;
(2)為了能選撥最優(yōu)秀的學(xué)生,該校決定在筆試成績(jī)高的第組用分層抽樣法抽取6名學(xué)生進(jìn)入第二輪面試,則第3,4,5組每組個(gè)抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)第(2)問(wèn)的前提下,學(xué)校決定在這6名學(xué)生中隨機(jī)抽取2名學(xué)生接受考官甲的面試,求:第4組至少有一名學(xué)生被考官甲面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知一個(gè)圓錐的頂點(diǎn)和底面的圓周都在同一個(gè)球面上,若球的半徑為1,則當(dāng)圓錐的體積最大時(shí),圓錐的高為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖所示,在直角梯形ABCD中,AD∥BC,AD⊥DC,BC=2AD=2DC,四邊形ABEF是正方形,且平面ABEF⊥平面ABCD,M為AF的中點(diǎn),
(I)求證:AC⊥BM;
(2)求異面直線CE與BM所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.雙曲線x2-4y2=4的漸近線方程是( 。
A.y=±4xB.y=±$\frac{1}{4}$xC.y=±2xD.y=±$\frac{1}{2}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案