5.已知函數(shù)f(x)=ax3+bx(a,b∈R)的圖象如圖所示,則a,b的關(guān)系是( 。
A.3a-b=0B.3a+b=0C.a-3b=0D.a+3b=0

分析 根據(jù)函數(shù)導(dǎo)數(shù)和極值之間的關(guān)系,求出對應(yīng)a,b的關(guān)系,即可得到結(jié)論.

解答 解:由三次函數(shù)的圖象可知,x=1函數(shù)的極大值,x=-1是極小值,
即1,-1是f′(x)=0的兩個(gè)根,
∵f(x)=ax3+bx,
∴f′(x)=3ax2+b,
∴1×(-1)=$\frac{3a}$,
∴3a+b=0
故選:B

點(diǎn)評 本題主要考查函數(shù)的極值和導(dǎo)數(shù)之間的關(guān)系,以及根與系數(shù)之間的關(guān)系的應(yīng)用,考查學(xué)生的計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(Ⅰ)計(jì)算:cos(-$\frac{19π}{6}$);
(Ⅱ)已知x∈[$\frac{π}{2}$,$\frac{3π}{2}$],且sinx=-$\frac{3}{5}$,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知O點(diǎn)為坐標(biāo)原點(diǎn),且點(diǎn)A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若|$\overrightarrow{AC}|=|\overrightarrow{BC}$|,求tanθ的值;
(2)若$(\overrightarrow{OA}+2\overrightarrow{OB})•\overrightarrow{OC}$=1,求sinθcosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.焦點(diǎn)在y軸上,虛半軸的長為4,半焦距為6的雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{y}^{2}}{20}$-$\frac{{x}^{2}}{16}$=1B.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{20}$=1C.$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{36}$=1D.$\frac{{y}^{2}}{36}$-$\frac{{x}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直角坐標(biāo)平面內(nèi),過點(diǎn)P(2,1)且與圓x2-x+y2+2y-4=0相切的直線( 。
A.有兩條B.有且僅有一條C.不存在D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知拋物線C:y2=4x的焦點(diǎn)為F,P(1,m)是拋物線C上的一點(diǎn).
(1)若橢圓$C':\frac{x^2}{4}+\frac{y^2}{n}=1$與拋物線C有共同的焦點(diǎn),求橢圓C'的方程;
(2)設(shè)拋物線C與(1)中所求橢圓C'的交點(diǎn)為A、B,求以O(shè)A和OB所在的直線為漸近線,且經(jīng)過點(diǎn)P的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓C:(x-1)2+y2=r2(r>0)與直線l:y=x+3,且直線l上有唯一的一個(gè)點(diǎn)P,使得過點(diǎn)P作圓C的兩條切線互相垂直.設(shè)EF是直線l上的一條線段,若對于圓C上的任意一點(diǎn)Q,$\overrightarrow{QE}•\overrightarrow{QF}≤0$,則$|{\overrightarrow{EF}}|$的最小值是4+4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合$M=\left\{{\left.{({x,y})}\right|\left\{\begin{array}{l}2x+y=2\\ x-y=1\end{array}\right.}\right\}$,則(  )
A.M={1,0}B.M={(1,0)}C.M=(1,0)D.M={1}

查看答案和解析>>

同步練習(xí)冊答案