函數(shù)f(x)=log
12
(3-2x-x2)
的單調(diào)遞增區(qū)間是
[-1,1)
[-1,1)
分析:先根據(jù)對數(shù)函數(shù)的真數(shù)大于零求定義域,再把復(fù)合函數(shù)分成二次函數(shù)和對數(shù)函數(shù),分別在定義域內(nèi)判斷兩個基本初等函數(shù)的單調(diào)性,再由“同增異減”求原函數(shù)的遞增區(qū)間.
解答:解:要使函數(shù)有意義,則3-2x-x2>0,解得-3<x<1,故函數(shù)的定義域是(-3,1),
令t=-x2-2x+3,則函數(shù)t在(-3,-1)上遞增,在[-1,1)上遞減,
又因函數(shù)y=
log
 
1
2
t
在定義域上單調(diào)遞減,
故由復(fù)合函數(shù)的單調(diào)性知f(x)=log
1
2
(3-2x-x2)
的單調(diào)遞增區(qū)間是[-1,1).
故答案為:[-1,1).
點(diǎn)評:本題的考點(diǎn)是復(fù)合函數(shù)的單調(diào)性,對于對數(shù)函數(shù)需要先求出定義域,這也是容易出錯的地方;再把原函數(shù)分成幾個基本初等函數(shù)分別判斷單調(diào)性,再利用“同增異減”求原函數(shù)的單調(diào)性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•宿州三模)函數(shù)f(x)=log 2x-
1
x
的一個零點(diǎn)落在下列哪個區(qū)間( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=log(a2-3)(ax+4)在[-1,1]上是單調(diào)增函數(shù),則實(shí)數(shù)a的取值范圍是
(-2,-
3
)∪(2,4)
(-2,-
3
)∪(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log(2x-1)
3-2x
的定義域是
(0,1)∪(1,
3
2
)
(0,1)∪(1,
3
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=lo
g
|x+1|
t
在區(qū)間(-2,-1)上恒有f(x)>0,則關(guān)于t的不等式f(8t-1)>f(1)的解集為
(0,
1
3
(0,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
lo
g
 
4
x , x>0
4x ,  x≤0
,則滿足f(x)<
1
2
的x取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案