設(shè)f(x)=
5x+2k    (x≤0,k為常數(shù))
ex           (x>0)
問k為何值時,有
lim
x→0
f(x)存在?
分析:由題設(shè)知
lim
x→0-
f(x)=2k,
lim
x→0+
f(x)=1,所以要使
lim
x→0
f(x)存在,應(yīng)有2k=1,由此可求出k的值.
解答:解:
lim
x→0-
f(x)=2k,
lim
x→0+
f(x)=1,
∴要使
lim
x→0
f(x)存在,應(yīng)有2k=1.
∴k=
1
2
點評:本題考查極限的性質(zhì)和應(yīng)用,解題時要注意函數(shù)有極限的充要條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)定義:設(shè)f′′(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x))為函數(shù)y=f(x)的“拐點”.已知函數(shù)f(x)=x3-6x2+5x+4,請回答下列問題.(1)求函數(shù)f(x)的“拐點”A的坐標
(2)檢驗函數(shù)f(x)的圖象是否關(guān)于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關(guān)“拐點”的結(jié)論;
(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(1,3)(不要過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=5x-6,g (x)=log
5
f(x)

(1)解不等式g(n)[g(1)+g(2)+…+g(n)]<0 (n∈N*);
(2)求h(n)=g(n)[g(1)+g(2)+…+g(n)]-132n (n∈N*)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=sin(2x+φ)(-π<φ<0),f(x)圖象的一條對稱軸是x=
π8

(1)求φ的值;
(2)證明:對任意實數(shù)c,直線5x-2y+c=0與函數(shù)y=f(x)的圖象不相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選考題
請從下列三道題當(dāng)中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當(dāng)AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)設(shè)f(x)=x5-5x4+10x3-10x2+5x+1,則f(x)的反函數(shù)f-1(x)為( 。
A、f-1(x)=1+
5x-2
B、f-1(x)=1+
5x
C、f-1(x)=-1+
5x-2
D、f-1(x)=1-
5x-2

查看答案和解析>>

同步練習(xí)冊答案