已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求在區(qū)間上的最大值;
(III)設(shè)函數(shù),(),試討論函數(shù)與圖象交點(diǎn)的個(gè)數(shù)
(Ⅰ)∵,其定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052601303213652462/SYS201205260132419334460892_DA.files/image002.png">. 1分
∴. (2分)
∵,∴當(dāng)時(shí),;當(dāng)時(shí),.
故函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是. (4分)
(Ⅱ)由(Ⅰ)知,函數(shù)的單調(diào)遞增區(qū)間是;單調(diào)遞減區(qū)間是.
當(dāng)時(shí),在區(qū)間上單調(diào)遞增,的最大值;
當(dāng)時(shí),在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,則在處取得極大值,也即該函數(shù)在上的最大值,此時(shí)的最大值;
∴在區(qū)間上的最大值…………………(8分)
(Ⅲ)討論函數(shù)與圖象交點(diǎn)的個(gè)數(shù),即討論方程在上根的個(gè)數(shù).
該方程為,即.
只需討論方程在上根的個(gè)數(shù), ……………………(9分)
令,.
因,,令,得,
當(dāng)時(shí),;當(dāng)時(shí),. ∴,
當(dāng)時(shí),; 當(dāng)時(shí),, 但此時(shí),且以軸為漸近線.
如圖構(gòu)造的圖象,并作出函數(shù)的圖象.
①當(dāng)即時(shí),方程無(wú)根,沒(méi)有公共點(diǎn);
②當(dāng)即時(shí),方程只有一個(gè)根,有一個(gè)公共點(diǎn);
③當(dāng)即時(shí),方程有兩個(gè)根,有兩個(gè)公共點(diǎn).
【解析】(I)直接求導(dǎo),根據(jù)導(dǎo)數(shù)大于零和小于零,求其增減區(qū)間即可.
(II)在第(I)問(wèn)的基礎(chǔ)上對(duì)a進(jìn)行討論求極值,最值.
(III)可以構(gòu)造函數(shù),然后利用導(dǎo)數(shù)研究其圖像特征,作出草圖,然后數(shù)形結(jié)合求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
3 |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆江西省高三上學(xué)期第二次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若對(duì)任意,函數(shù)在上都有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省東莞市教育局教研室高三上學(xué)期數(shù)學(xué)文卷 題型:解答題
(本小題滿分分)
已知函數(shù).
(1)求函數(shù)的最大值;
(2)在中,,角滿足,求的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com