14.已知函數(shù)f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定義域為集合A,集合B={x|1≤x<9}.
(1)求集合A;
(2)求∁RA∩B.

分析 (1)由函數(shù)解析式列出不等式組,求出解集為函數(shù)的定義域A;
(2)由集合A和補集的運算求出∁RA,由交集的運算求出∁RA∩B.

解答 解:(1)由題意得,$\left\{\begin{array}{l}{x-3≥0}\\{7-x>0}\end{array}\right.$,
解得3≤x<7,
所以函數(shù)的定義域:集合A=[3,7);----(5分)
(2)由(1)得,A=[3,7),
則∁RA=(-∞,3)∪[7,+∞),
又集合B={x|1≤x<9}=[1,9),
所以∁RA∩B=[1,3)∪[7,9).-----(10分)

點評 本題考查交、并、補集的混合運算,以及函數(shù)的定義域,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.設(shè)曲線y=f(x)(x∈R)上任一點(x0,f(x0))處的切線斜率為k=(x0-2)(x0+1)2,則( 。
A.f(x)有唯一的極小值f(2)B.f(x)既有極小值f(2)又有極大值f(-1)
C.f(x)在(-∞,2)上為增函數(shù)D.f(x)在(-∞,-1)∪(-1,2)上為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知集合A={x|1<x<2},B={y|y=2x-1,x∈A},則集合A∩B=( 。
A.(1,3)B.(2,3)C.(1,2)D.(0,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=sinx-xcosx.
(I)討論f(x)在(0,2π)上的單調(diào)性;
(II)若關(guān)于x的方程f(x)-x2+2πx-m=0在(0,2π)有兩個根,求實數(shù)m的取值范圍.
(III)求證:當x∈(0,$\frac{π}{2}$)時,f(x)<$\frac{1}{3}$x3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a-5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C⊆(A∪B),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=$\frac{1}{\sqrt{lo{g}_{2}(2x-1)}}$的定義域為( 。
A.(0,2)B.(-∞,0]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)向量$\overrightarrow a$與$\overrightarrow b$滿足|${\overrightarrow a}$|=2,$\overrightarrow b$在$\overrightarrow a$方向上的投影為1,若存在實數(shù)λ,使得$\overrightarrow a$與$\overrightarrow a$-λ$\overrightarrow b$垂直,則λ=( 。
A.3B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖是某班全體學生外出時乘車、步行、騎車的人數(shù)分布直方圖和扇形分布圖(兩圖都不完整),則下列結(jié)論中錯誤的是( 。
A.該班總?cè)藬?shù)為50人B.步行人數(shù)為30人
C.騎車人數(shù)占總?cè)藬?shù)的20%D.乘車人數(shù)是騎車人數(shù)的2.5倍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=x(lnx-ax)(a∈R),g(x)=f'(x).
(1)若曲線y=f(x) 在點(1,f(1))處的切線與直線3x-y-1=0平行,求實數(shù)a的值.
(2)若函數(shù)F(x)=g(x)+$\frac{1}{2}$x2
?①若函數(shù)F(x)有兩個極值點,求a的取值范圍
?②將函數(shù)F(x)的兩個極值點記為s、t,且s<t,求證:-1<f(s)

查看答案和解析>>

同步練習冊答案