(2006•重慶一模)等差數(shù)列{an}中,a1+a4+a10+a16+a19=150,則a20-a26+a16的值是
30
30
分析:把已知等式左邊利用等差數(shù)列的性質(zhì)化簡,求出a10的值,然后利用等差數(shù)列的通項公式化簡所求的式子,去括號合并后,再利用等差數(shù)列的通項公式變形,將a10的值代入即可求出值.
解答:解:∵a1+a4+a10+a16+a19=5a10=150,
∴a10=30,
則a20-a26+a16=(a1+19d)-(a1+25d)+(a1+15d)
=a1+9d=a10=30.
故答案為:30
點評:此題考查了等差數(shù)列的性質(zhì),以及等差數(shù)列的通項公式,熟練掌握性質(zhì)及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)定義在R上的奇函數(shù)f (x)滿足;當(dāng)x>0時,f (x)=2006x+log2006x,則在R上方程f (x)=0的實根個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知函數(shù)f(x)=a(2cos2
x2
+sinx)+b

(I)當(dāng)a=1時,求函數(shù)f (x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)a<0且x∈[0,π]時,函數(shù)f (x)的值域是[3,4],求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知f (x)=log2x,則函數(shù)y=f-1(1-x)的大致圖象是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)設(shè)兩個非零向量
b
=(
x
x-2
,
1
x-2
)
,
c
=(x-a+1,a-4)
,解關(guān)于x的不等式
b
c
>2
(其中a>1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•重慶一模)已知函數(shù)f(x)=|1-
1x
|

(I)是否存在實數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域和值域都是[a,b].若存在,求出a,b的值;若不存在,請說明理由;
(II)若存在實數(shù)a,b(a<b),使得函數(shù)y=f (x)的定義域為[a,b],值域為[ma,mb](m≠0).求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案