在直角坐標系xoy中,以O為圓心的圓與直線x-
3
y=4
相切.
(Ⅰ)求圓O的方程;
(Ⅱ)圓O與x軸相交于A,B兩點,圓內(nèi)的動點P(x0,y0)滿足|PO|2=|PA|•|PB|,求x02+y02的取值范圍.
分析:(Ⅰ)利用直線與圓相切的性質(zhì)即可求出;
(Ⅱ)利用兩點間的距離公式、點在圓內(nèi)滿足的條件即可得出.
解答:解:( I)由題意圓O的半徑r 等于原點O到直線x-
3
y=4
的距離,
r=
4
1+3
=2

∴圓的方程為x2+y2=4.
( II)由x2=4,解得x=±2,不妨設A(-2,0),B(2,0).
由|PO|2=|PA|•|PB|得
(x0+2)2+y02
(x0-2)2+y02
=x02+y02

整理得x02-y02=2
令t=x02+y02=2y02+2=2(y02+1);
∵點P(x0,y0)在圓O內(nèi),∴
x02+y02<4
x02-y02=2
,由此得0≤y02<1;
2≤2(y02+1)<4
∴t∈[2,4),∴(x02+y02)∈[2,4)
點評:熟練掌握直線與圓相切的性質(zhì)、兩點間的距離公式、點在圓內(nèi)滿足的條件是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點,點M為C1與C2在第一象限的交點,且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點,若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知點P(2cosx+1,2cos2x+2)和點Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動點P在射線OA上運動,動點Q在y軸的正半軸上運動,△POQ的面積為2
3

(1)求線段PQ中點M的軌跡C的方程;
(2)R1,R2是曲線C上的動點,R1,R2到y(tǒng)軸的距離之和為1,設u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案