1.從6人中選出4人分別到巴黎,倫敦,悉尼,莫斯科四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲,乙兩人不去巴黎游覽,則不同的選擇方案共有240.(用數(shù)字作答)

分析 根據(jù)題意,使用間接法,首先計(jì)算從6人中選4人分別到四個(gè)城市游覽的情況數(shù)目,再分析計(jì)算其包含的甲、乙兩人去巴黎游覽的情況數(shù)目,進(jìn)而由事件間的關(guān)系,計(jì)算可得答案.

解答 解:根據(jù)題意,由排列公式可得,首先從6人中選4人分別到四個(gè)城市游覽,有A64=360種不同的情況,
其中包含甲到巴黎游覽的有A53=60種,乙到巴黎游覽的有A53=60種,
故這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有360-60-60=240種;
故答案為240.

點(diǎn)評(píng) 本題考查排列的應(yīng)用,注意間接法比直接分析更為簡便,要使用間接法.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)f(x)=x2+2x,集合A={(x,y)|f(x)+f(y)≤2},B={(x,y)|f(x)≤f(y)},則由A∩B的元素構(gòu)成的圖形的面積是( 。
A.πB.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.給出以下四個(gè)結(jié)論:
①函數(shù)$f(x)=\frac{2x-1}{x+1}$的對(duì)稱中心是(-1,2);
②若關(guān)于x的方程$x-\frac{1}{x}+k=0在x∈({0,1})$沒有實(shí)數(shù)根,則k的取值范圍是k≥2;
③在△ABC中,“bcosA=acosB”是“△ABC為等邊三角形”的充分不必要條件;
④若$f(x)=sin({2x-\frac{π}{3}})$的圖象向右平移φ(φ>0)個(gè)單位后為奇函數(shù),則φ最小值是$\frac{π}{12}$.
其中正確的結(jié)論是①.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知對(duì)數(shù)函數(shù)f(x)=logax(a>0,a≠1).
(1)若f(8)=3,求a的值;
(2)解不等式f(x)≤loga(2-3x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知A(-1,0),B(3,0),則與A距離為1且與B距離為4的點(diǎn)有( 。
A.3個(gè)B.2個(gè)C.1個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.“a≠1或b≠2”是“a+b≠3”的( 。
A.必要不充分條件B.既不充分也不必要條件
C.充要條件D.充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知sinα+cosα=$\frac{\sqrt{2}}{3}$,0<α<π,則tan(α-$\frac{π}{4}$)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{3}sin({ωx+ω})-cos({ωx+ω})({-\frac{π}{2}<φ<0,ω>0})$為偶函數(shù),且函數(shù)的y=f(x)圖象相鄰的兩條對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求$f({\frac{π}{24}})$的值;
(2)將y=f(x)的圖象向右平移$\frac{π}{6}$個(gè)單位后,再將所得的圖象上個(gè)點(diǎn)的橫坐標(biāo)伸長為原來的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)區(qū)間,并求其在$[{-\frac{π}{3},\frac{5π}{6}}]$上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且f'(x)<f(x)對(duì)任意的x∈R恒成立,則下列不等式均成立的是(  )
A.f(ln2)<2f(0),f(2)<e2f(0)B.f(ln2)>2f(0),f(2)>e2f(0)
C.f(ln2)<2f(0),f(2)>e2f(0)D.f(ln2)>2f(0),f(2)<e2f(0)

查看答案和解析>>

同步練習(xí)冊(cè)答案