【題目】已知函數(shù)f(x)=x2+ax+b,g(x)=ex(cx+d)若曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥﹣2時(shí),f(x)≤kg(x),求k的取值范圍.
【答案】
(1)解:由題意知f(0)=2,g(0)=2,f′(0)=4,g′(0)=4,
而f′(x)=2x+a,g′(x)=ex(cx+d+c),故b=2,d=2,a=4,d+c=4,
從而a=4,b=2,c=2,d=2;
(2)解:由(1)知,f(x)=x2+4x+2,g(x)=2ex(x+1)
設(shè)F(x)=kg(x)﹣f(x)=2kex(x+1)﹣x2﹣4x﹣2,
則F′(x)=2kex(x+2)﹣2x﹣4=2(x+2)(kex﹣1),
由題設(shè)得F(0)≥0,即k≥1,
令F′(x)=0,得x1=﹣lnk,x2=﹣2,
①若1≤k<e2,則﹣2<x1≤0,從而當(dāng)x∈(﹣2,x1)時(shí),F(xiàn)′(x)<0,當(dāng)x∈(x1,+∞)時(shí),F(xiàn)′(x)>0,
即F(x)在(﹣2,x1)上減,在(x1,+∞)上是增,故F(x)在[﹣2,+∞)上的最小值為F(x1),
而F(x1)=﹣x1(x1+2)≥0,x≥﹣2時(shí)F(x)≥0,即f(x)≤kg(x)恒成立.
②若k=e2,則F′(x)=2e2(x+2)(ex﹣e﹣2),從而當(dāng)x∈(﹣2,+∞)時(shí),F(xiàn)′(x)>0,
即F(x)在(﹣2,+∞)上是增,而F(﹣2)=0,故當(dāng)x≥﹣2時(shí),F(xiàn)(x)≥0,即f(x)≤kg(x)恒成立.
③若k>e2時(shí),F(xiàn)′(x)>2e2(x+2)(ex﹣e﹣2),
而F(﹣2)=﹣2ke﹣2+2<0,所以當(dāng)x>﹣2時(shí),f(x)≤kg(x)不恒成立,
綜上,k的取值范圍是[1,e2].
【解析】(1)對(duì)f(x),g(x)進(jìn)行求導(dǎo),已知在交點(diǎn)處有相同的切線及曲線y=f(x)和曲線y=g(x)都過(guò)點(diǎn)P(0,2),從而解出a,b,c,d的值;(2)由(1)得出f(x),g(x)的解析式,再求出F(x)及它的導(dǎo)函數(shù),通過(guò)對(duì)k的討論,判斷出F(x)的最值,從而判斷出f(x)≤kg(x)恒成立,從而求出k的范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某共享汽車(chē)停放點(diǎn)的停車(chē)位排成一排且恰好全部空閑,假設(shè)最先來(lái)停車(chē)點(diǎn)停車(chē)的3輛共享汽車(chē)都是隨機(jī)停放的,且這3輛共享汽車(chē)都不相鄰的概率與這3輛共享汽車(chē)恰有2輛相鄰的概率相等,則該停車(chē)點(diǎn)的車(chē)位數(shù)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用系統(tǒng)抽樣法從130件產(chǎn)品中抽取容量為10的樣本,將130件產(chǎn)品從1~130編號(hào),按編號(hào)順序平均分成10組(1~13號(hào),14~26號(hào),…,118~130號(hào)),若第9組抽出的號(hào)碼是114,則第3組抽出的號(hào)碼是( )
A. 36 B. 37 C. 38 D. 39
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某超市為顧客提供四種結(jié)賬方式:現(xiàn)金、支付寶、微信、銀聯(lián)卡、若顧客甲只帶了現(xiàn)金,顧客乙只用支付寶或微信付款,顧客丙、丁用哪種方式結(jié)賬都可以,這四名顧客購(gòu)物后,恰好用了其中的三種結(jié)賬方式,那么他們結(jié)賬方式的可能情況有 _____ 種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(1,0),曲線C:y=x2﹣2,點(diǎn)Q是曲線C上的一動(dòng)點(diǎn),若點(diǎn)P與點(diǎn)Q關(guān)于A點(diǎn)對(duì)稱(chēng),則點(diǎn)P的軌跡方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x2﹣2x+2在區(qū)間(0,4]的值域?yàn)椋?/span> )
A.(2,10]
B.[1,10]
C.(1,10]
D.[2,10]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從裝有2個(gè)紅球和2個(gè)白球的袋內(nèi)任取兩個(gè)球,那么下列事件中,對(duì)立事件的是( )
A.至少有一個(gè)白球;都是白球
B.至少有一個(gè)白球;至少有一個(gè)紅球
C.恰好有一個(gè)白球;恰好有2個(gè)白球
D.至少有1個(gè)白球;都是紅球
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com