記數(shù)列{an}的前n項和為Sn,若{
Sn
an
}
是公差為d的等差數(shù)列,則{an}為等差數(shù)列時d=
1或
1
2
1或
1
2
分析:{
Sn
an
}
S1
a1
=1為首項,d為公差的等差數(shù)列,知Sn=an+(n-1)dan,故Sn-1=an-1+(n-2)dan-1.所以an=an+(n-1)dan-an-1-(n-2)dan-1,整理可得(n-1)dan-(n-1)dan-1=(1-d)an-1,由此入手,能夠求出d.
解答:解:∵{
Sn
an
}
S1
a1
=1為首項,d為公差的等差數(shù)列,
Sn
an
=1+(n-1)d,
∴Sn=an+(n-1)dan,①
Sn-1=an-1+(n-2)dan-1.②
①-②得:
an=an+(n-1)dan-an-1-(n-2)dan-1,
整理可得
(n-1)dan-(n-1)dan-1=(1-d)an-1,
假設(shè)d=0,那么
Sn
an
=1
,
S1=a1,S2=a1+a2=a2,
∴a1=0,∵a1為除數(shù),不能為0,∴d≠0.
在此假設(shè)an的公差為d′,
所以有d′=
(1-d)an-1
(n-1)d
,
當(dāng)d=1時,d′=0,an是以a1為首項,0為公差的等差數(shù)列.
當(dāng)d≠1時,an-1=(n-1)
d•d′
1-d
,
an-an-1=
d•d′
1-d
=d′,
∴d=
1
2
,
此時,an是以d′為首項,d′為公差的等差數(shù)列.
綜上所述,d=1,或d=
1
2

故答案為:1或
1
2
點評:本題考查等差數(shù)列的性質(zhì)和應(yīng)用,考查運算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.對數(shù)學(xué)思維的要求比較高,有一定的探索性.綜合性強,難度大.解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

記數(shù)列{an}的前n項和為Sn,且Sn=2n(n-1),則該數(shù)列是( 。
A、公比為2的等比數(shù)列
B、公比為
1
2
的等比數(shù)列
C、公差為2的等差數(shù)列
D、公差為4的等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,a2=4,an+2+2an=3an+1(n∈N*)
(1)求證:數(shù)列{an+1-an}是等比數(shù)列,并求{an}的通項公式;
(2)記數(shù)列{an}的前n項和Sn,求使得Sn>21-2n成立的最小整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的項是由1或0構(gòu)成,且首項為1,在第k個1和第k+1個1之間有2k-1個0,即數(shù)列{an}為:1,0,1,0,0,0,1,0,0,0,0,0,1,…,記數(shù)列{an}的前n項和為Sn,則S2013=
45
45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am構(gòu)成首項為2,公差為-2的等差數(shù)列am+1,am+2,…,a2m,構(gòu)成首項為
1
2
,公比為
1
2
的等比數(shù)列,其中m≥3,m∈N+,
(l)當(dāng)1≤n≤2m,n∈N+,時,求數(shù)列{an}的通項公式;
(2)若對任意的n∈N+,都有an+2m=an成立.
①當(dāng)a27=
1
64
時,求m的值;
②記數(shù)列{an}的前n項和為Sn.判斷是否存在m,使得S4m+1≥2成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)記數(shù)列{an}的前n項和為Sn,所有奇數(shù)項之和為S′,所有偶數(shù)項之和為S″.
(1)若{an}是等差數(shù)列,項數(shù)n為偶數(shù),首項a1=1,公差d=
3
2
,且S″-S′=15,求Sn;
(2)若{an}是等差數(shù)列,首項a1>0,公差d∈N*,且S′=36,S″=27,請寫出所有滿足條件的數(shù)列;
(3)若數(shù)列{an}的首項a1=1,滿足2tSn+1-3(t-1)Sn=2t(n∈N*),其中實常數(shù)t∈(
3
5
,3)
,且S-S=
5
2
,請寫出滿足上述條件常數(shù)t的兩個不同的值和它們所對應(yīng)的數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案