如圖,網(wǎng)格紙是邊長為1的小正方形,在其上用粗線畫出了某多面體的三視圖,則該多面體的體積為
 
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:幾何體是三棱錐與半圓錐的組合體,根據(jù)三視圖判斷三棱錐的高及底面三角形的相關(guān)幾何量的數(shù)據(jù),判斷半圓錐的高及底面半徑,把數(shù)據(jù)代入棱錐與圓錐的體積公式計(jì)算.
解答: 解:由三視圖知:幾何體是三棱錐與半圓錐的組合體,且三棱錐與半圓錐的高都是4,
三棱錐的底面三角形的一條邊長為4,該邊上的高為2,
半圓錐的底面半徑為2,
∴幾何體的體積V=
1
3
×
1
2
×4×2×4+
1
2
×
1
3
×π×22×4=
16+8π
3

故答案為:
16+8π
3
點(diǎn)評:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及數(shù)據(jù)所對應(yīng)的幾何量是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a≠0),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求函數(shù)f(x)的表達(dá)式;
(2)求函數(shù)f(x)的圖象與直線x+y-1=0所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ax2+5x-2>0的解集是M.
(1)若2∈M,求a的取值范圍;
(2)若M={x|
1
2
<x<2},求不等式ax2-5x+a2-1>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3+ax2+bx(a,b∈R).
(Ⅰ)若曲線C:y=f(x)經(jīng)過點(diǎn)P(1,2),曲線C在點(diǎn)P處的切線與直線x+2y-1=0垂直,求a,b的值;
(Ⅱ)若f(x)在區(qū)間(1,2)內(nèi)存在兩個(gè)不同的極值點(diǎn),求證:0<a+b<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖(其中[x]表示不超過x的最大整數(shù)),則輸出的S值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=x2-ax+3a-1在(3,+∞)上是增函數(shù),實(shí)數(shù)a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)空間幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xsinx,x∈[-
3
2
,
3
2
],若f(3a+1)<f(2a-1),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)正方體玩具的6個(gè)面分別標(biāo)有數(shù)字1,2,2,3,3,3.若連續(xù)拋擲該玩具兩次,則向上一面數(shù)字之和為5的概率為
 

查看答案和解析>>

同步練習(xí)冊答案