15.已知數(shù)列{an}的前n項(xiàng)和為Sn,${S_n}=3{a_n}-2({n∈{N^*}})$,則數(shù)列{an}的通項(xiàng)公式為an=$(\frac{3}{2})^{n-1}$(n∈N*).

分析 利用遞推關(guān)系、等比數(shù)列的通項(xiàng)公式即可得出.

解答 解:∵${S_n}=3{a_n}-2({n∈{N^*}})$,
∴當(dāng)n=1時(shí),a1=3a1-2,解得a1=1.
當(dāng)n≥2時(shí),an=Sn-Sn-1=3an-2-(3an-1-2),化為:an=$\frac{3}{2}{a}_{n-1}$,
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)為1,公比為$\frac{3}{2}$.
∴an=$(\frac{3}{2})^{n-1}$(n∈N*).
故答案為:an=$(\frac{3}{2})^{n-1}$(n∈N*).

點(diǎn)評(píng) 本題考查了遞推關(guān)系、等比數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.橢圓E1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1和橢圓E2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{_{2}}^{2}}$=1滿足$\frac{{a}_{2}}{{a}_{1}}$=$\frac{_{2}}{_{1}}$=m(m>0),則稱這兩個(gè)橢圓相似,m稱為其相似比.
(1)求經(jīng)過點(diǎn)(2,$\sqrt{6}$),且與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1相似的橢圓方程;
(2)設(shè)過原點(diǎn)的一條射線L分別與(1)中的兩個(gè)橢圓交于A、B兩點(diǎn)(其中點(diǎn)A在線段OB上),求$|OA|+\frac{1}{|OB|}$的最大值和最小值;
(3)對(duì)于真命題“過原點(diǎn)的一條射線分別與相似比為2的兩個(gè)橢圓C1:$\frac{{x}^{2}}{{2}^{2}}$+$\frac{{y}^{2}}{(\sqrt{2})^{2}}$=1和C2:$\frac{{x}^{2}}{{4}^{2}}$+$\frac{{y}^{2}}{(2\sqrt{2})^{2}}$=1交于A、B兩點(diǎn),P為線段AB上的一點(diǎn),若|OA|,|OP|,|OB|成等比數(shù)列,則點(diǎn)P的軌跡方程為$\frac{{x}^{2}}{(2\sqrt{2})^{2}}$+$\frac{{y}^{2}}{{2}^{2}}$=1”.請(qǐng)用推廣或類比的方法提出類似的一個(gè)真命題,不必證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線C的焦點(diǎn)F與橢圓3x2+4y2=3的右焦點(diǎn)重合.
(1)求拋物線C的方程;
(2)過焦點(diǎn)F作互相垂直的兩條直線分別交拋物線C于A,M和N,B,求四邊形ABMN的面積S的最小值及S最小值時(shí)對(duì)應(yīng)的兩條直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對(duì)價(jià)格y(單位:千元/噸)和利潤(rùn)z的影響,對(duì)近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價(jià)格統(tǒng)計(jì)如表:
x12345
y7.06.55.53.82.2
(Ⅰ)求y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測(cè)當(dāng)年產(chǎn)量為多少時(shí),年利潤(rùn)z取到最大值?(保留兩位小數(shù))
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=3-x+x2-4的零點(diǎn)個(gè)數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.${∫}_{-1}^{1}$(x2+$\sqrt{1-{x}^{2}}$)dx=$\frac{π}{2}$$+\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45°,AP=AD=AC=2,E、F、H分別為PA、CD、PF的中點(diǎn).
(Ⅰ)設(shè)面PAB∩面PCD=l,求證:CD∥l;
(Ⅱ)求證:AH⊥面EDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,四棱錐P-ABCD中,平面PAB⊥平面ABCD,底面ABCD為直角梯形,AB=2CD=2BC=2,AB∥CD,AB⊥BC,△PAB為等腰直角三角形且PA⊥PB.
(1)求證:平面PBC⊥平面PAB.
(2)在線段PA上求一點(diǎn)E,使PC∥平面EBD,并求出$\frac{PE}{PA}$的值.
(3)在(2)的條件下求三棱錐P-EBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在等差數(shù)列中,連續(xù)四項(xiàng)為a,x,b,2x,那么a:b=(  )
A.1:4B.1:3C.1:3或1D.1:2

查看答案和解析>>

同步練習(xí)冊(cè)答案