對(duì)于函數(shù)f(x),定義域?yàn)镈,若存在x0∈D使f(x0)=x0,則稱(x0,x0)為f(x)的圖象上的不動(dòng)點(diǎn).由此,函數(shù)的圖象上不動(dòng)點(diǎn)的坐標(biāo)為_(kāi)_______.

答案:(1,1)(5,5)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)
在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A(x1,y1),B(x2,y2)是函數(shù)f(x)=
1
2
+log2
x
1-x
的圖象上兩點(diǎn),且
OM
=
1
2
(
OA
+
OB
)
,O為坐標(biāo)原點(diǎn),已知點(diǎn)M的橫坐標(biāo)為
1
2

(Ⅰ)求證:點(diǎn)M的縱坐標(biāo)為定值;
(Ⅱ)定義定義Sn=
n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求S2011;
(Ⅲ)對(duì)于(Ⅱ)中的Sn,設(shè)an=
1
2Sn+1
(n∈N*)
.若對(duì)于任意n∈N*,不等式kan3-3an2+1>0恒成立,試求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,n≥2令an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.
(3)對(duì)于給定的實(shí)數(shù)a(a>1)是否存在這樣的數(shù)列{an},使得f(an)=log3(
3
an+1)
,且a1=
1
a-1
?若存在,求出a滿足的條件;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=ax+
b
x-1
-a(a∈R,a≠0)
在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點(diǎn)處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實(shí)數(shù)m,k,使得f(x)+f(m-x)=k對(duì)于定義域內(nèi)的任意x都成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:福建省高考真題 題型:解答題

(Ⅰ)已知函數(shù)f(x)=x3-x,其圖象記為曲線C,
(ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(ⅱ)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則為定值;
(Ⅱ)對(duì)于一般的三次函數(shù)g(x)=ax3+bx2+cx+d(a≠0),請(qǐng)給出類似于(Ⅰ)(ⅱ)的正確命題,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案