點(diǎn)A(1,1)到直線xcosθ+ysinθ-2=0的距離的最大值是( 。
A、1+
2
B、2+
2
C、1+
3
D、2+
3
考點(diǎn):點(diǎn)到直線的距離公式
專(zhuān)題:直線與圓
分析:利用點(diǎn)到直線的距離公式、兩角和差的正弦關(guān)系及其正弦函數(shù)的單調(diào)性即可得出.
解答: 解:點(diǎn)A(1,1)到直線xcosθ+ysinθ-2=0的距離d=
|cosθ+sinθ-2|
cos2θ+sin2θ
=2-
2
sin(θ+
π
4
)

當(dāng)且僅當(dāng)sin(θ+
π
4
)
=-1時(shí)d取得最大值,d=2+
2

故選:B.
點(diǎn)評(píng):本題考查了點(diǎn)到直線的距離公式、兩角和差的正弦關(guān)系及其正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為減少空氣污染,某市鼓勵(lì)居民用電(減少粉塵),并采用分段計(jì)費(fèi)的方法計(jì)算電費(fèi).當(dāng)每家庭月用電量不超過(guò)100度時(shí),按每度0.57元計(jì)算;當(dāng)每月用電量超過(guò)100度時(shí),其中的100度仍按原標(biāo)準(zhǔn)收費(fèi),超過(guò)的部分每度按0.5元計(jì)算.
(1)設(shè)月用電x度時(shí),應(yīng)交電費(fèi)y元,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
(2)若某家庭一月份用電120度,問(wèn)應(yīng)交電費(fèi)多少元?
(3)若某家庭第一季度繳納電費(fèi)情況如下表:
月份 1月 2月 3月 合計(jì)
交費(fèi)金額(元) 76 63 45.6 184.6
問(wèn)這個(gè)家庭第一季度共用多少度電?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c∈R,則下列說(shuō)法正確的是( 。
A、若a>b,則a-c>b-c
B、若a>b,則
a
c
b
c
C、若ac<bc,則a<b
D、若a>b,則ac2>bc2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

sin6,cos6,tan6,cos2中,大于0的是( 。
A、sin6B、cos6
C、tan6D、cos2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x) 是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=sinx-lgx,則f(x)的零點(diǎn)個(gè)數(shù)為( 。
A、7B、6C、5D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

二階矩陣M有特征值λ=8,其對(duì)應(yīng)的一個(gè)特征向量
e
=
1
1
,并且矩陣M對(duì)應(yīng)的變換將點(diǎn)(-1,2)變換成點(diǎn)(-2,4),求矩陣M2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
=(cosα,sinα)
b
=(cosβ,sinβ)
,若
a
-
b
=(-
12
13
5
13
)
,θ為
a
b
的夾角,
(Ⅰ)求θ的值;
(Ⅱ)若f(x)=2sin(θ-x)cos(θ-x)+2
3
sin2(θ-x)
,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn) A(2,-3),B(-3,-2),若直線l:y=k(x-1)+1與線段AB相交,則直線l的斜率的范圍是( 。
A、k≥
3
4
或k≤-4
B、-4≤k≤
3
4
C、k<-
1
5
D、-
3
4
≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

tanα
tanα-6
=-1
,則
2cosα-3sinα
3cosα+4sinα
=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案