(2013·天津模擬)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn,bn+1)(n∈N*)在直線y=x+2上.
(1)求數(shù)列{an},{bn}的通項公式.
(2)求數(shù)列{an·bn}的前n項和Dn.
(3)設(shè)cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項和T2n.
(1)an=2an-1(n≥2) bn=2n-1
(2)Dn=(2n-3)2n+1+6
(3)-2n2-n
【解析】(1)當n=1時,a1=2,
當n≥2時,an=Sn-Sn-1=2an-2an-1,
所以an=2an-1(n≥2),所以{an}是等比數(shù)列,公比為2,首項a1=2,所以an=2n,
又點P(bn,bn+1)(n∈N*)在直線y=x+2上,所以bn+1=bn+2,
所以{bn}是等差數(shù)列,公差為2,首項b1=1,所以bn=2n-1.
(2)由(1)知an·bn=(2n-1)×2n,
所以Dn=1×21+3×22+5×23+7×24+…+(2n-3)×2n-1+(2n-1)×2n,①
2Dn=1×22+3×23+5×24+7×25+…+(2n-3)×2n+(2n-1)×2n+1.②
①-②得-Dn=1×21+2×22+2×23+2×24+…+2×2n-(2n-1)×2n+1
=2+2×-(2n-1)×2n+1
=(3-2n)2n+1-6,
則Dn=(2n-3)2n+1+6.
(3)cn=,
T2n=(a1+a3+…+a2n-1)-(b2+b4+…+b2n)
=2+23+…+22n-1-[3+7+…+(4n-1)]=-2n2-n.
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題
若S1=dx,S2=dx,S3=dx,則S1,S2,S3的大小關(guān)系為( )
A.S1<S2<S3 B.S2<S1<S3
C.S2<S3<S1 D.S3<S2<S1
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長都為a,頂點都在一個球面上,則該球的表面積為( )
A.πa2 B.πa2 C.πa2 D.5πa2
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:填空題
已知x,y取值如下表:
x | 0 | 1 | 4 | 5 | 6 | 8 |
y | 1.3 | 1.8 | 5.6 | 6.1 | 7.4 | 9.3 |
從所得的散點圖分析可知:y與x線性相關(guān),且=0.95x+a,則a=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題
6位選手依次演講,其中選手甲不在第一個也不在最后一個演講,則不同的演講次序共有( )
A.240種 B.360種 C.480種 D.720種
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:填空題
(2013·濰坊模擬)在△ABC中,角A,B,C所對的邊分別為a,b,c,若acos B+bcos A=csin C,b2+c2-a2=bc,則角B=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題
(2013·大綱全國卷)已知數(shù)列{an}滿足3an+1+an=0,a2=-,則{an}的前10項和等于( )
A.-6(1-3-10) B.(1-3-10)
C.3(1-3-10) D.3(1+3-10)
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A.?x0∈R,f(x0)=0
B.函數(shù)y=f(x)的圖象是中心對稱圖形
C.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減
D.若x0是f(x)的極值點,則f′(x0)=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com