已知x,y取值如下表:

x

0

1

4

5

6

8

y

1.3

1.8

5.6

6.1

7.4

9.3

 

從所得的散點圖分析可知:y與x線性相關,且=0.95x+a,則a=________.

 

1.45

【解析】∵=4,=5.25,因線性回歸方程通過樣本點中心(,),故有5.25=0.95×4+a,∴a=1.45.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:解答題

某幼兒園準備建一個轉(zhuǎn)盤,轉(zhuǎn)盤的外圍是一個周長為k米的圓.在這個圓上安裝座位,且每個座位和圓心處的支點都有一根直的鋼管相連經(jīng)預算,轉(zhuǎn)盤上的每個座位與支點相連的鋼管的費用為3k元/根,且當兩相鄰的座位之間的圓弧長為x米時,相鄰兩座位之間的鋼管和其中一個座位的總費用為k元.假設座位等距分布,且至少有兩個座位,所有座位都視為點,且不考慮其他因素,記轉(zhuǎn)盤的總造價為y元.

(1)試寫出y關于x的函數(shù)關系式,并寫出定義域;

(2)當k=50米時,試確定座位的個數(shù),使得總造價最低?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:解答題

如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.

(2)求證:平面PAC⊥平面PCB.

(3)設二面角M—BP—C的大小為θ,求cos θ的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,下面四個結(jié)論中不成立的(  )

A.BC∥平面PDF

B.DF⊥平面PAE

C.平面PDE⊥平面ABC

D.平面PAE⊥平面ABC

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:解答題

如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢圖.空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染.某人隨機選擇3月1日至3月13日中的某一天到達該市,并停留2天.

(1)求此人到達當日空氣質(zhì)量優(yōu)良的概率;

(2)求此人在該市停留期間只有1天空氣重度污染的概率;

(3)由圖判斷從哪天開始連續(xù)三天的空氣質(zhì)量指數(shù)方差最大?(結(jié)論不要求證明)

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 概率與統(tǒng)計(解析版) 題型:選擇題

如圖所示的是甲、乙兩人在5次綜合測評中成績的莖葉圖,其中一個數(shù)字被污損,則甲的平均成績超過乙的平均成績的概率為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:解答題

(2013·天津模擬)已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2(n∈N*),數(shù)列{bn}滿足b1=1,且點P(bn,bn+1)(n∈N*)在直線y=x+2上.

(1)求數(shù)列{an},{bn}的通項公式.

(2)求數(shù)列{an·bn}的前n項和Dn.

(3)設cn=an·sin2-bn·cos2(n∈N*),求數(shù)列{cn}的前2n項和T2n.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

(2013·黃岡模擬)集合M={y|y=lg(x2+1),x∈R},集合N={x|4x>4,x∈R},則M∩N等于(  )

A.[0,+∞) B.[0,1) C.(1,+∞) D.(0,1]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年吉林省延邊州高考復習質(zhì)量檢測理科數(shù)學試卷(解析版) 題型:選擇題

設z=1–i(i是虛數(shù)單位),則復數(shù)+i2的虛部是

A.1 B.-1 C.i D.-i

 

查看答案和解析>>

同步練習冊答案