方程x2+y2+2ax-2ay=0表示的圓①關于直線y=x對稱;②關于直線x+y=0對稱;③其圓心在x軸上,且過原點;④其圓心在y軸上,且過原點.其中敘述正確的是__________.


解析:

圓心坐標為(-a,a),在x+y=0上,所以圓關于x+y=0對稱.?

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

命題p:方程x2+y2-4x+2ay+2a2-2a+1=0表示圓,
命題q:?m∈[0,3],?x∈R使不等式x2-2ax+7≥
2m+8
成立,
如果命題“p∨q”為真命題,且“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若方程x2+y2-2ax+a2+2a-3=0表示圓,且過點A(a,a)可作該圓的兩條切線,則實數(shù)a的取值范圍為
a<-3或1<a<
3
2
a<-3或1<a<
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦點為F1(-c,0),F(xiàn)2(c,0),點Q是橢圓外的動點,滿足|
F1Q
|=2a,點P是線段F1Q與該橢圓的交點,曲線C的方程是x2+y2=a2
(1)若點P的橫坐標為
a
2
,證明:|
F1P
|=a+
c
2

(2)試問:曲線C上是否存在點M,使得△F1MF2的面積等于S=b2?若存在,求出橢圓離心率的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C:x2+y2-2ax-2(a-1)y-1+2a=0.
(1)證明:不論a取何實數(shù),曲線C必過定點;
(2)當a≠1時,若曲線C與直線y=2x-1相切,求a的值;
(3)對所有的a∈R且a≠1,是否存在直線l與曲線C總相切?如果存在,求出l的方程;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若方程x2+y2-2ax+a2+2a-3=0表示圓,且過點A(a,a)可作該圓的兩條切線,則實數(shù)a的取值范圍為________.

查看答案和解析>>

同步練習冊答案